TY - JOUR
T1 - (-)-Epigallocatechin-3-gallate stimulates myogenic differentiation through TAZ activation
AU - Kim, A. Rum
AU - Kim, Kyung Min
AU - Byun, Mi Ran
AU - Hwang, Jun Ha
AU - Park, Jung Il
AU - Oh, Ho Taek
AU - Jeong, Mi Gyeong
AU - Hwang, Eun Sook
AU - Hong, Jeong-Ho
PY - 2017/4/29
Y1 - 2017/4/29
N2 - Muscle loss is a typical process of aging. Green tea consumption is known to slow down the progress of aging. Their underlying mechanisms, however, remain largely unknown. In this study, we investigated the effect of (-)-epigallocatechin-3-gallate (EGCG), a polyphenolic compound of green tea, on myogenic differentiation and found that EGCG significantly increases myogenic differentiation. After EGCG treatment, the expression of myogenic marker genes, such as myosin heavy chain, are increased through activation of TAZ, a transcriptional coactivator with a PDZ-binding motif. TAZ-knockdown does not stimulate EGCG-induced myogenic differentiation. EGCG facilitates the interaction between TAZ and MyoD, which stimulates MyoD-mediated gene transcription. EGCG induces nuclear localization of TAZ through the dephosphorylation of TAZ at its Ser89 residue, which relieves 14-3-3 binding in the cytosol. Interestingly, inactivation of Lats kinase is observed after EGCG treatment, which is responsible for the production of dephosphorylated TAZ. Together, these results suggest that EGCG induces myogenic differentiation through TAZ, suggesting that TAZ plays an important role in EGCG induced muscle regeneration.
AB - Muscle loss is a typical process of aging. Green tea consumption is known to slow down the progress of aging. Their underlying mechanisms, however, remain largely unknown. In this study, we investigated the effect of (-)-epigallocatechin-3-gallate (EGCG), a polyphenolic compound of green tea, on myogenic differentiation and found that EGCG significantly increases myogenic differentiation. After EGCG treatment, the expression of myogenic marker genes, such as myosin heavy chain, are increased through activation of TAZ, a transcriptional coactivator with a PDZ-binding motif. TAZ-knockdown does not stimulate EGCG-induced myogenic differentiation. EGCG facilitates the interaction between TAZ and MyoD, which stimulates MyoD-mediated gene transcription. EGCG induces nuclear localization of TAZ through the dephosphorylation of TAZ at its Ser89 residue, which relieves 14-3-3 binding in the cytosol. Interestingly, inactivation of Lats kinase is observed after EGCG treatment, which is responsible for the production of dephosphorylated TAZ. Together, these results suggest that EGCG induces myogenic differentiation through TAZ, suggesting that TAZ plays an important role in EGCG induced muscle regeneration.
KW - Catechins
KW - Myogenesis
KW - Satellite cells
KW - TAZ
UR - http://www.scopus.com/inward/record.url?scp=85015319230&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85015319230&partnerID=8YFLogxK
U2 - 10.1016/j.bbrc.2017.03.049
DO - 10.1016/j.bbrc.2017.03.049
M3 - Article
C2 - 28315325
AN - SCOPUS:85015319230
SN - 0006-291X
VL - 486
SP - 378
EP - 384
JO - Biochemical and Biophysical Research Communications
JF - Biochemical and Biophysical Research Communications
IS - 2
ER -