Abstract
Let p C∞(Rn \ {0}) be homogeneous of degree one. We show that the convolution operator Tδf̂(ξ', ξn+1)=(1-p(ξ')/|ξn+1|)δ f̂(ξ',ξn+1), (ξ',ξn+1 R n×R1 is bounded from Hardy spaces H p(Rn+1) to LP(Rn+1) for δ > n(l/p - 1/2) - 1/2, 0 < p < 1.
Original language | English |
---|---|
Pages (from-to) | 117-132 |
Number of pages | 16 |
Journal | Rocky Mountain Journal of Mathematics |
Volume | 39 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2009 |
ASJC Scopus subject areas
- Mathematics(all)