Estimation of shape and growth brain network atlases for connectomic brain mapping in developing infants

Islem Rekik, Gang Li, Weili Lin, Dinggang Shen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

In vivo brain connectomics have heavily relied on using functional and diffusion Magnetic Resonance Imaging (MRI) modalities to examine functional and structural relationships between pairs of anatomical regions in the brain. However, research work on brain morphological (i.e., shape-to-shape) connections, which can be derived from T1-w and T2-w MR images, in both typical and atypical development or ageing is very scarce. Furthermore, the brain cannot be only regarded as a static shape, since it is a dynamic complex system that changes at functional, structural and morphological levels. Hence, examining the 'connection' between brain shape and its changes with time (e.g., growth) may help advance our understanding of connectomic brain dynamics as well as disorders that may affect it. To address these limitations, we unprecedentedly introduce two population-based shape and growth connectivity analysis tools that further extend the field of connectomics to brain morphology and dynamics: the morphome and the kinectome. Specifically, for a population of anatomically labelled shapes, the morphome identifies a network of anatomical shape regions that are connected when morphologically similar at a single timepoint, whereas the kinectome identifies anatomical shape regions that elicit similar evolution dynamics across successive timepoints. These proposed generic tools can be easily invested to examine how a baseline shape influences its deformation trajectory at later timepoints using any longitudinal shape data. We evaluated these tools on 23 infants, with right and left cortical surfaces reconstructed at birth, 3, 6, 9 and 12 months of age. Investigating the relationship between the neonatal morphome and the postnatal kinectome (from birth to 1 year of age) gave insights into brain connectivity at birth and how it develops over time.

Original languageEnglish
Title of host publication2018 IEEE 15th International Symposium on Biomedical Imaging, ISBI 2018
PublisherIEEE Computer Society
Pages985-989
Number of pages5
ISBN (Electronic)9781538636367
DOIs
Publication statusPublished - 2018 May 23
Event15th IEEE International Symposium on Biomedical Imaging, ISBI 2018 - Washington, United States
Duration: 2018 Apr 42018 Apr 7

Publication series

NameProceedings - International Symposium on Biomedical Imaging
Volume2018-April
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Other

Other15th IEEE International Symposium on Biomedical Imaging, ISBI 2018
Country/TerritoryUnited States
CityWashington
Period18/4/418/4/7

Bibliographical note

Publisher Copyright:
© 2018 IEEE.

Keywords

  • Brain Connectivity
  • Cortex Morphology
  • Growth and Shape
  • Kinetcome
  • Morphome
  • Shape Similarity Networks

ASJC Scopus subject areas

  • Biomedical Engineering
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Estimation of shape and growth brain network atlases for connectomic brain mapping in developing infants'. Together they form a unique fingerprint.

Cite this