TY - JOUR
T1 - Evaluation of two amendments (biochar and acid mine drainage sludge) on arsenic contaminated soil using chemical, biological, and ecological assessments
AU - Kim, Min Suk
AU - Lee, Sang Hwan
AU - Park, Hyun
AU - Kim, Jeong Gyu
N1 - Funding Information:
Funding: This research was funded by the National Research Foundation of Korea (NRF) (2019R1I1A1 A01043684) and partly supported by the Korea University Grant and OJEong Resilience Institute.
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/8
Y1 - 2021/8
N2 - Various types of organic and inorganic materials are widely examined and applied into the arsenic (As) contaminated soil to stabilize As bioavailability and to enhance soil quality as an amendment. This study deals with two types of amendments: biochar for organic amendment and acid mine drainage sludge (AMDS) for inorganic amendment. Each amendment was applied in two types of As contaminated soils: one showed low contaminated concentration and acid property and the other showed high contaminated concentration and alkali property. In order to comprehensively evaluate the effect of amendments on As contaminated soil, chemical (As bioavailability), biological phytotoxicity (Lactuca sativa), soil respiration activity, dehydrogenase activity, urease activity, ßglucosidase activity, and acid/alkali phosphomonoesterase activity, an ecological (total bacterial cells and total metagenomics DNA at the phylum level) assessment was conducted. Both amendments increased soil pH and dissolved organic carbon (DOC), which changes the bioavailability of As. In reducing phytotoxicity to As, the AMDS was the most effective regardless of soil types. Although soil enzyme activity results were not consistent with amendments types and soil types, bacterial diversity was increased after amendment application in acid soil. In acid soil, the results of principal component analysis represented that AMDS contributes to improve soil quality through the reduction in As bioavailability and the correction of soil pH from acidic to neutral condition, despite the increases in DOC. However, soil DOC had a negative effect on As bioavailability, phytotoxicity and some enzyme activity in alkali soil. Taken together, it is necessary to comprehensively evaluate the interaction of chemical, biological, and ecological properties according to soil pH in the decision-making stages for the selection of appropriate soil restoration material.
AB - Various types of organic and inorganic materials are widely examined and applied into the arsenic (As) contaminated soil to stabilize As bioavailability and to enhance soil quality as an amendment. This study deals with two types of amendments: biochar for organic amendment and acid mine drainage sludge (AMDS) for inorganic amendment. Each amendment was applied in two types of As contaminated soils: one showed low contaminated concentration and acid property and the other showed high contaminated concentration and alkali property. In order to comprehensively evaluate the effect of amendments on As contaminated soil, chemical (As bioavailability), biological phytotoxicity (Lactuca sativa), soil respiration activity, dehydrogenase activity, urease activity, ßglucosidase activity, and acid/alkali phosphomonoesterase activity, an ecological (total bacterial cells and total metagenomics DNA at the phylum level) assessment was conducted. Both amendments increased soil pH and dissolved organic carbon (DOC), which changes the bioavailability of As. In reducing phytotoxicity to As, the AMDS was the most effective regardless of soil types. Although soil enzyme activity results were not consistent with amendments types and soil types, bacterial diversity was increased after amendment application in acid soil. In acid soil, the results of principal component analysis represented that AMDS contributes to improve soil quality through the reduction in As bioavailability and the correction of soil pH from acidic to neutral condition, despite the increases in DOC. However, soil DOC had a negative effect on As bioavailability, phytotoxicity and some enzyme activity in alkali soil. Taken together, it is necessary to comprehensively evaluate the interaction of chemical, biological, and ecological properties according to soil pH in the decision-making stages for the selection of appropriate soil restoration material.
KW - Dissolved organic carbon
KW - Microbial analysis
KW - Phytotoxicity
KW - Principal component analysis
UR - http://www.scopus.com/inward/record.url?scp=85111706989&partnerID=8YFLogxK
U2 - 10.3390/ma14154111
DO - 10.3390/ma14154111
M3 - Article
AN - SCOPUS:85111706989
SN - 1996-1944
VL - 14
JO - Materials
JF - Materials
IS - 15
M1 - 4111
ER -