Evaluation of water content in an active layer using penetration-type time domain reflectometry

Jong Sub Lee, Won Taek Hong, Keunbo Park, Seung Seo Hong, Sang Ho Lee, Yong Hoon Byun

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)


The moisture condition of the active layer in Arctic regions can induce severe problems, such as ground subsidence and frost heave. Thus, the water content in the active layer needs to be estimated using a light and portable in-situ testing device. In this study, a penetration-type time domain reflectometry (PTDR) device is developed for the estimation of volumetric water content in the active layer. The developed PTDR is applied at a site for an electrical resistivity survey to characterize the water distribution along a measurement line. A PTDR consists of a PTDR module, connecting rods, and a guide with a hammer. The PTDR module can determine the dielectric constant of a material from the measurement of the travel time of electromagnetic waves. Using remolded soil samples, the dielectric constants measured from the PTDR are calibrated with the volumetric water content. The PTDR calibration demonstrates that the dielectric constant increases with the water content. For the temperature of 0.1 to 15.2 °C, the travel time only slightly depends on the temperature variance. For field application, a PTDR is pressed into the ground and measures the electromagnetic waves and temperaturewith depth. The results of the field tests show that the volumetric water content measured by the PTDR increases with depth due to the impermeable layer located underneath the active layer. The electrical resistivity survey conducted at the same site provides the electrical resistivity profile for a long distance and shallow depth soils. Furthermore, the electrical resistivity survey and PTDR establish a significant correlation between electrical resistivity and water content. The PTDR developed in this study can be effectively used as an advanced in-situ testing method to estimate the water distribution in the active layer.

Original languageEnglish
Article number935
JournalApplied Sciences (Switzerland)
Issue number6
Publication statusPublished - 2018 Jun 5

Bibliographical note

Publisher Copyright:
© 2018 by the authors.


  • Active layer
  • Electrical resistivity
  • Time domain reflectometry (TDR)
  • Water content

ASJC Scopus subject areas

  • General Materials Science
  • Instrumentation
  • General Engineering
  • Process Chemistry and Technology
  • Computer Science Applications
  • Fluid Flow and Transfer Processes


Dive into the research topics of 'Evaluation of water content in an active layer using penetration-type time domain reflectometry'. Together they form a unique fingerprint.

Cite this