Abstract
This article presents the design of an event-trigger-based networked robust dissipative tracking control systems. An event-triggered mechanism (ETM) is proposed by introducing the probability density distribution of communication delay. Thus, it can yield less conservative results. The tracking error system is transferred by a distributed communication delay system wherein the delay probability density is viewed as the kernel of the distributed delay. The threshold of the proposed ETM is designed as a dynamic parameter to adapt the transmission of the control signal. By applying the Lyapunov method, sufficient conditions are achieved to ensure the stability of the tracking error system with strictly dissipative performance, which includes <formula><tex>$H_{\infty }$</tex></formula> performance and passive performance. Based on the dissipativity analysis condition, a co-design method with both tracking control and the ETM is derived in a united framework. Experiments on networked dc motor tracking system are provided to show the effectiveness of the presented method.
Original language | English |
---|---|
Journal | IEEE Systems Journal |
DOIs | |
Publication status | Accepted/In press - 2021 |
Bibliographical note
Publisher Copyright:IEEE
Keywords
- Cyber-physical systems
- DC motors
- Delays
- Networked control systems
- Power system dynamics
- Probability density function
- Protocols
- Vehicle dynamics
- dc motor tracking system
- distributed communication delay
- event-triggered mechanism
ASJC Scopus subject areas
- Control and Systems Engineering
- Information Systems
- Computer Science Applications
- Computer Networks and Communications
- Electrical and Electronic Engineering