Abstract
Plasmonic-enhanced emission was achieved from a III-nitride none-wire optoelectronic device. The III-nitride system has been widely applied to light emitters in the blue, violet and ultra-violet portions of the electromagnetic spectrum. One limit to its application has been the efficiency reduction associated with the inherently defective nature (particularly threading dislocations) of the material that is typically grown by hetero-epitaxy. The VLS fabrication technique inherently yields defect-free material that serves as an excellent emission and gain media. A two-step approach was developed in a metalorganic chemical vapor deposition system to grow nano-wires initially vertically by the VLS mechanism and, when necessary, laterally by altering the growth conditions. Furthermore, various silver coatings were employed to enhance the plasmonic-based transfer of electromagnetic energy generated in the nano-wire to the external near-field.
Original language | English |
---|---|
Pages (from-to) | 378-382 |
Number of pages | 5 |
Journal | Physica Status Solidi (A) Applications and Materials Science |
Volume | 205 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2008 Feb |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Surfaces and Interfaces
- Surfaces, Coatings and Films
- Electrical and Electronic Engineering
- Materials Chemistry