TY - JOUR
T1 - Extracellular loop 3 (EL3) and EL3-proximal transmembrane helix 7 of the mammalian type I and type II gonadotropin-releasing hormone (GnRH) receptors determine differential ligand selectivity to GnRH-I and GnRH-II
AU - Li, Jian Hua
AU - Choe, Han
AU - Wang, Ai Fen
AU - Maiti, Kaushik
AU - Wang, Chengbing
AU - Salam, Abdus
AU - Chun, Sang Young
AU - Lee, Won Kyo
AU - Kim, Kyungjin
AU - Kwon, Hyuk Bang
AU - Seong, Jae Young
PY - 2005/4
Y1 - 2005/4
N2 - Mammalian type I and II gonadotropin-releasing hormone (GnRH) receptors (GnRHRs) show differential ligand preference for GnRH-I and GnRH-II, respectively. Using a variety of chimeric receptors based on green monkey GnRHR-2 (gmGnRHR-2), a representative type II GnRHR, and rat GnRHR, a representative type I GnRHR, this study elucidated specific domains responsible for this ligand selectivity. A chimeric gmGnRHR-2 with the extracellular loop 3 (EL3) and EL3-proximal transmembrane helix 7 (TMH7) of rat GnRHR showed a great increase in ligand sensitivity to GnRH-I but not to GnRH-II. Point-mutation studies indicate that four amino acids, Leu/Phe7.38, Leu/Phe 7.43, Ala/Pro7.46, and Pro/Cys7.47 in TMH7 are critical for ligand selectivity as well as receptor conformation. Furthermore, a combinatory mutation (Pro7.31-Pro7.32-Ser7.33 motif to Ser-Glu-Pro in EL3 and Leu7.38, Leu7.43, Ala 7.46, and Pro7.47 to those of rat GnRHR) in gmGnRH-2 exhibited an approximately 500-fold increased sensitivity to GnRH-I, indicating that these residues are critical for discriminating GnRH-II from GnRH-I. [Trp7]GnRH-I and [Trp8]GnRH-I but not [HiS 5]GnRH-I exhibit a higher potency in activating wild-type gmGnRHR-2 than native GnRH-I, indicating that amino acids at positions 7 and 8 of GnRHs are more important than position 5 for differential recognition by type I and type II GnRHRs. As a whole, these data suggest a molecular coevolution of ligands and their receptors and facilitate the understanding of the molecular interaction between GnRHs and their cognate receptors.
AB - Mammalian type I and II gonadotropin-releasing hormone (GnRH) receptors (GnRHRs) show differential ligand preference for GnRH-I and GnRH-II, respectively. Using a variety of chimeric receptors based on green monkey GnRHR-2 (gmGnRHR-2), a representative type II GnRHR, and rat GnRHR, a representative type I GnRHR, this study elucidated specific domains responsible for this ligand selectivity. A chimeric gmGnRHR-2 with the extracellular loop 3 (EL3) and EL3-proximal transmembrane helix 7 (TMH7) of rat GnRHR showed a great increase in ligand sensitivity to GnRH-I but not to GnRH-II. Point-mutation studies indicate that four amino acids, Leu/Phe7.38, Leu/Phe 7.43, Ala/Pro7.46, and Pro/Cys7.47 in TMH7 are critical for ligand selectivity as well as receptor conformation. Furthermore, a combinatory mutation (Pro7.31-Pro7.32-Ser7.33 motif to Ser-Glu-Pro in EL3 and Leu7.38, Leu7.43, Ala 7.46, and Pro7.47 to those of rat GnRHR) in gmGnRH-2 exhibited an approximately 500-fold increased sensitivity to GnRH-I, indicating that these residues are critical for discriminating GnRH-II from GnRH-I. [Trp7]GnRH-I and [Trp8]GnRH-I but not [HiS 5]GnRH-I exhibit a higher potency in activating wild-type gmGnRHR-2 than native GnRH-I, indicating that amino acids at positions 7 and 8 of GnRHs are more important than position 5 for differential recognition by type I and type II GnRHRs. As a whole, these data suggest a molecular coevolution of ligands and their receptors and facilitate the understanding of the molecular interaction between GnRHs and their cognate receptors.
UR - http://www.scopus.com/inward/record.url?scp=20144372480&partnerID=8YFLogxK
U2 - 10.1124/mol.104.004887
DO - 10.1124/mol.104.004887
M3 - Article
C2 - 15635044
AN - SCOPUS:20144372480
SN - 0026-895X
VL - 67
SP - 1099
EP - 1110
JO - Molecular Pharmacology
JF - Molecular Pharmacology
IS - 4
ER -