Abstract
Flexible paper-based supercapacitors were fabricated using carbon nanotubes (CNTs) and manganese oxides (MnO2), and their electrochemical properties were characterized in a three-electrode system. CNTs were synthesized via water-assisted chemical vapor deposition (CVD) and dispersed in water using the surfactant sodium dodecylbenzenesulfonate (SDBS). The solution containing dispersed CNTs was simply coated on papers by drop-dry method. MnO2 was then electrochemically deposited on the CNT-coated papers. The MnO 2/CNT/paper supercapacitors showed high specific capacitance of 540 F/g. Specific energy and specific power were 20 Wh/kg and 1.5 kW/kg, respectively, at current density of 5 A/g in 0.1 M sodium sulfate (Na 2SO4) aqueous solution. Demonstrated high capacitance of the paper-based electrochemical capacitor makes it a promising candidate for flexible and low-cost energy storage device applications.
Original language | English |
---|---|
Pages (from-to) | 2510-2514 |
Number of pages | 5 |
Journal | Synthetic Metals |
Volume | 160 |
Issue number | 23-24 |
DOIs | |
Publication status | Published - 2010 Dec |
Keywords
- Carbon nanotubes
- Flexible
- Manganese oxides
- Papers
- Supercapacitors
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
- Metals and Alloys
- Materials Chemistry