Abstract
Recently, advanced technologies have unlimited potential in solving various problems with a large amount of data. However, these technologies have yet to show competitive performance in brain-computer interfaces (BCIs) which deal with brain signals. Basically, brain signals are difficult to collect in large quantities, in particular, the amount of information would be sparse in spontaneous BCIs. In addition, we conjecture that high spatial and temporal similarities between tasks increase the prediction difficulty. We define this problem as sparse condition. To solve this, a factorization approach is introduced to allow the model to obtain distinct representations from latent space. To this end, we propose two feature extractors: A class-common module is trained through adversarial learning acting as a generator; Class-specific module utilizes loss function generated from classification so that features are extracted with traditional methods. To minimize the latent space shared by the class-common and class-specific features, the model is trained under orthogonal constraint. As a result, EEG signals are factorized into two separate latent spaces. Evaluations were conducted on a single-arm motor imagery dataset. From the results, we demonstrated that factorizing the EEG signal allows the model to extract rich and decisive features under sparse condition.
Original language | English |
---|---|
Title of host publication | 2022 26th International Conference on Pattern Recognition, ICPR 2022 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1090-1097 |
Number of pages | 8 |
ISBN (Electronic) | 9781665490627 |
DOIs | |
Publication status | Published - 2022 |
Event | 26th International Conference on Pattern Recognition, ICPR 2022 - Montreal, Canada Duration: 2022 Aug 21 → 2022 Aug 25 |
Publication series
Name | Proceedings - International Conference on Pattern Recognition |
---|---|
Volume | 2022-August |
ISSN (Print) | 1051-4651 |
Conference
Conference | 26th International Conference on Pattern Recognition, ICPR 2022 |
---|---|
Country/Territory | Canada |
City | Montreal |
Period | 22/8/21 → 22/8/25 |
Bibliographical note
Publisher Copyright:© 2022 IEEE.
ASJC Scopus subject areas
- Computer Vision and Pattern Recognition