Abstract
This paper proposes a framework of fast neuroimaging-based retrieval and AD analysis, by three key steps: (1) landmark detection, which efficiently extracts landmark-based neuroimaging features without the need of nonlinear registration in testing stage; (2) landmark selection, which removes redundant/noisy landmarks via proposing a feature selection method that considers structural information among landmarks; and (3) hashing, which converts high-dimensional features of subjects into binary codes, for efficiently conducting approximate nearest neighbor search and diagnosis of AD. We have conducted experiments on Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, and demonstrated that our framework could achieve higher performance than the comparison methods, in terms of accuracy and speed (at least 100 times faster).
Original language | English |
---|---|
Title of host publication | Machine Learning in Medical Imaging - 7th International Workshop, MLMI 2016 held in conjunction with MICCAI 2016, Proceedings |
Editors | Li Wang, Heung-Il Suk, Yinghuan Shi, Ehsan Adeli, Qian Wang |
Publisher | Springer Verlag |
Pages | 313-321 |
Number of pages | 9 |
ISBN (Print) | 9783319471563 |
DOIs | |
Publication status | Published - 2016 |
Event | 7th International Workshop on Machine Learning in Medical Imaging, MLMI 2016 held in conjunction with 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016 - Athens, Greece Duration: 2016 Oct 17 → 2016 Oct 17 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 10019 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Other
Other | 7th International Workshop on Machine Learning in Medical Imaging, MLMI 2016 held in conjunction with 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016 |
---|---|
Country/Territory | Greece |
City | Athens |
Period | 16/10/17 → 16/10/17 |
Bibliographical note
Publisher Copyright:© Springer International Publishing AG 2016.
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science