FCN Based Label Correction for Multi-Atlas Guided Organ Segmentation

for the Alzheimer's Disease Neuroimaging Initiative

    Research output: Contribution to journalArticlepeer-review

    15 Citations (Scopus)

    Abstract

    Segmentation of medical images using multiple atlases has recently gained immense attention due to their augmented robustness against variabilities across different subjects. These atlas-based methods typically comprise of three steps: atlas selection, image registration, and finally label fusion. Image registration is one of the core steps in this process, accuracy of which directly affects the final labeling performance. However, due to inter-subject anatomical variations, registration errors are inevitable. The aim of this paper is to develop a deep learning-based confidence estimation method to alleviate the potential effects of registration errors. We first propose a fully convolutional network (FCN) with residual connections to learn the relationship between the image patch pair (i.e., patches from the target subject and the atlas) and the related label confidence patch. With the obtained label confidence patch, we can identify the potential errors in the warped atlas labels and correct them. Then, we use two label fusion methods to fuse the corrected atlas labels. The proposed methods are validated on a publicly available dataset for hippocampus segmentation. Experimental results demonstrate that our proposed methods outperform the state-of-the-art segmentation methods.

    Original languageEnglish
    Pages (from-to)319-331
    Number of pages13
    JournalNeuroinformatics
    Volume18
    Issue number2
    DOIs
    Publication statusPublished - 2020 Apr 1

    Bibliographical note

    Funding Information:
    Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd. and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health ( www.fnih.org ). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

    Funding Information:
    This work was supported in part by National Natural Science Foundation of China [61602307, 61877039] and Natural Science Foundation of Zhejiang Province [LY19F020013, LY20F020011].

    Funding Information:
    This work was supported in part by National Natural Science Foundation of China [61602307, 61877039] and Natural Science Foundation of Zhejiang Province [LY19F020013, LY20F020011]. Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd. and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

    Publisher Copyright:
    © 2020, Springer Science+Business Media, LLC, part of Springer Nature.

    Keywords

    • Deep learning
    • Fully convolutional network
    • Label fusion
    • Multi-atlas image segmentation

    ASJC Scopus subject areas

    • Software
    • General Neuroscience
    • Information Systems

    Fingerprint

    Dive into the research topics of 'FCN Based Label Correction for Multi-Atlas Guided Organ Segmentation'. Together they form a unique fingerprint.

    Cite this