Abstract
This paper proposes an effective feature compensation scheme based on speech model for achieving robust speech recognition. Conventional model-based method requires off-line training with noisy speech database and is not suitable for online adaptation. In the proposed scheme, we can relax the off-line training with noisy speech database by employing the parallel model combination technique for estimation of correction factors. Applying the model combination process over to the mixture model alone as opposed to entire HMM makes the online model combination possible. Exploiting the availability of noise model from off-line sources, we accomplish the online adaptation via MAP(Maximum A Posteriori) estimation. In addition, the online channel estimation procedure is induced within the proposed framework. The representative experimental results indicate that the suggested algorithm is effective in realizing robust speech recognition under the combined adverse conditions of additive background noise and channel distortion.
Original language | English |
---|---|
Title of host publication | EUROSPEECH 2003 - 8th European Conference on Speech Communication and Technology |
Publisher | International Speech Communication Association |
Pages | 677-680 |
Number of pages | 4 |
Publication status | Published - 2003 |
Event | 8th European Conference on Speech Communication and Technology, EUROSPEECH 2003 - Geneva, Switzerland Duration: 2003 Sept 1 → 2003 Sept 4 |
Other
Other | 8th European Conference on Speech Communication and Technology, EUROSPEECH 2003 |
---|---|
Country/Territory | Switzerland |
City | Geneva |
Period | 03/9/1 → 03/9/4 |
ASJC Scopus subject areas
- Computer Science Applications
- Software
- Linguistics and Language
- Communication