Skip to main navigation
Skip to search
Skip to main content
Korea University Pure Home
Home
Profiles
Research units
Research output
Press/Media
Search by expertise, name or affiliation
Feature discovery in non-metric pairwise data
Julian Laub, Klaus Robert Müller
Research output
:
Contribution to journal
›
Article
›
peer-review
57
Citations (Scopus)
Overview
Fingerprint
Fingerprint
Dive into the research topics of 'Feature discovery in non-metric pairwise data'. Together they form a unique fingerprint.
Sort by
Weight
Alphabetically
Keyphrases
Non-metricity
100%
Pairwise Data
100%
Feature Discovery
100%
Negative Eigenvalues
100%
Covariance Matrix
25%
Similarity Matrix
25%
Metricity
25%
Text Data
25%
Data Analysis Methods
25%
Proximity Data
25%
Information Hiding
25%
Human Judgment
25%
Cognitive Psychology
25%
Dissimilarity Matrix
25%
Handwritten Digits
25%
Pseudo-covariance
25%
Text Mining
25%
Computer Science
Eigenvalue
100%
Analysis Technique
25%
Covariance Matrix
25%
Similarity Matrix
25%
Text Mining
25%
Proximity Data
25%
Conventional Data
25%
Hidden Information
25%
handwritten digit
25%
Dissimilarity Matrix
25%
Engineering
Eigenvalue
100%
Metrics
100%
Similarities
25%
Covariance Matrix
25%
Mathematics
Negative Eigenvalue
100%
Matrix (Mathematics)
25%
Analysis Technique
25%
Exploratory Data Analysis
25%
Variance
25%
Covariance Matrix
25%
Negative Part
25%