Fine-Grained Segmentation Using Hierarchical Dilated Neural Networks

Sihang Zhou, Dong Nie, Ehsan Adeli, Yaozong Gao, Li Wang, Jianping Yin, Dinggang Shen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Citations (Scopus)

Abstract

Image segmentation is a crucial step in many computer-aided medical image analysis tasks, e.g., automated radiation therapy. However, low tissue-contrast and large amounts of artifacts in medical images, i.e., CT or MR images, corrupt the true boundaries of the target tissues and adversely influence the precision of boundary localization in segmentation. To precisely locate blurry and missing boundaries, human observers often use high-resolution context information from neighboring regions. To extract such information and achieve fine-grained segmentation (high accuracy on the boundary regions and small-scale targets), we propose a novel hierarchical dilated network. In the hierarchy, to maintain precise location information, we adopt dilated residual convolutional blocks as basic building blocks to reduce the dependency of the network on downsampling for receptive field enlargement and semantic information extraction. Then, by concatenating the intermediate feature maps of the serially-connected dilated residual convolutional blocks, the resultant hierarchical dilated module (HD-module) can encourage more smooth information flow and better utilization of both high-level semantic information and low-level textural information. Finally, we integrate several HD-modules in different resolutions in a parallel connection fashion to finely collect information from multiple (more than 12) scales for the network. The integration is defined by a novel late fusion module proposed in this paper. Experimental results on pelvic organ CT image segmentation demonstrate the superior performance of our proposed algorithm to the state-of-the-art deep learning segmentation algorithms, especially in localizing the organ boundaries.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
EditorsAlejandro F. Frangi, Gabor Fichtinger, Julia A. Schnabel, Carlos Alberola-López, Christos Davatzikos
PublisherSpringer Verlag
Pages488-496
Number of pages9
ISBN (Print)9783030009366
DOIs
Publication statusPublished - 2018
Event21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 - Granada, Spain
Duration: 2018 Sept 162018 Sept 20

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11073 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
Country/TerritorySpain
CityGranada
Period18/9/1618/9/20

Bibliographical note

Funding Information:
D. Shen—This work was supported in part by the National Key R&D Program of China 2018YFB1003203 and NIH grant CA206100.

Publisher Copyright:
© 2018, Springer Nature Switzerland AG.

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Fine-Grained Segmentation Using Hierarchical Dilated Neural Networks'. Together they form a unique fingerprint.

Cite this