TY - JOUR
T1 - Finite element analysis of periventricular lucency in hydrocephalus
T2 - Extravasation or transependymal CSF absorption?
AU - Kim, Hakseung
AU - Jeong, Eun Jin
AU - Park, Dae Hyeon
AU - Czosnyka, Zofia
AU - Yoon, Byung C.
AU - Kim, Keewon
AU - Czosnyka, Marek
AU - Kim, Dong Ju
N1 - Funding Information:
This research was partially supported by the Basic Science
Funding Information:
Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, & Future Planning (grant no. 2013R1A1A1004827). This work was further supported by the Technology Innovation Program (or Industrial Strategic technology development program; grant no. 10049743, “Establishing a medical device development open platform, as a hub for accelerating close firm-hospital communication”) funded by the Ministry of Trade, Industry & Energy (MI, Korea). Dr. M. Czosnyka has served as a consultant to Codman (Johnson & Johnson), and has given paid lectures for Integra LifeSciences, Ltd.
Publisher Copyright:
©AANS, 2016.
PY - 2016
Y1 - 2016
N2 - OBJECTIVE: Periventricular lucency (PVL) is often observed in the hydrocephalic brain on CT or MRI. Earlier studies have proposed the extravasation of ventricular CSF into the periventricular white matter or transependymal CSF absorption as possible causes of PVL in hydrocephalus. However, there is insufficient evidence for either theory to be conclusive. METHODS: A finite element (FE) model of the hydrocephalic brain with detailed anatomical geometry was constructed to investigate the possible mechanism of PVL in hydrocephalus. The initiation of hydrocephalus was modeled by applying a transmantle pressure gradient (TPG). The model was exposed to varying TPGs to investigate the effects of different geometrical characteristics on the distribution of PVL. The edema map was derived based on the interstitial pore pressure. RESULTS: The model simulated the main radiological features of hydrocephalus, i.e., ventriculomegaly and PVL. The degree of PVL, assessed by the pore pressure, was prominent in mild to moderate ventriculomegaly. As the degree of ventriculomegaly exceeded certain values, the pore pressure across the cerebrum became positive, thus inducing the disappearance of PVL. CONCLUSIONS: The results are in accordance with common clinical findings of PVL. The degree of ventriculomegaly significantly influences the development of PVL, but two factors were not linearly correlated. The results are indicative of the transependymal CSF absorption as a possible cause of PVL, but the extravasation theory cannot be formally rejected.
AB - OBJECTIVE: Periventricular lucency (PVL) is often observed in the hydrocephalic brain on CT or MRI. Earlier studies have proposed the extravasation of ventricular CSF into the periventricular white matter or transependymal CSF absorption as possible causes of PVL in hydrocephalus. However, there is insufficient evidence for either theory to be conclusive. METHODS: A finite element (FE) model of the hydrocephalic brain with detailed anatomical geometry was constructed to investigate the possible mechanism of PVL in hydrocephalus. The initiation of hydrocephalus was modeled by applying a transmantle pressure gradient (TPG). The model was exposed to varying TPGs to investigate the effects of different geometrical characteristics on the distribution of PVL. The edema map was derived based on the interstitial pore pressure. RESULTS: The model simulated the main radiological features of hydrocephalus, i.e., ventriculomegaly and PVL. The degree of PVL, assessed by the pore pressure, was prominent in mild to moderate ventriculomegaly. As the degree of ventriculomegaly exceeded certain values, the pore pressure across the cerebrum became positive, thus inducing the disappearance of PVL. CONCLUSIONS: The results are in accordance with common clinical findings of PVL. The degree of ventriculomegaly significantly influences the development of PVL, but two factors were not linearly correlated. The results are indicative of the transependymal CSF absorption as a possible cause of PVL, but the extravasation theory cannot be formally rejected.
KW - Biomechanics
KW - Finite element model
KW - Hydrocephalus
KW - Intracranial pressure
KW - Periventricular lucency
KW - Transmantle pressure gradient
UR - http://www.scopus.com/inward/record.url?scp=84976527454&partnerID=8YFLogxK
U2 - 10.3171/2014.11.JNS141382
DO - 10.3171/2014.11.JNS141382
M3 - Article
C2 - 26274984
AN - SCOPUS:84976527454
SN - 0022-3085
VL - 124
SP - 334
EP - 341
JO - Journal of Neurosurgery
JF - Journal of Neurosurgery
IS - 2
ER -