Abstract
The formation of alkanethiol (H-(CH 2) n-SH, n = 8-18) and 1,8-octanedithiol (HS-(CH 2) 8-SH) monolayer films on n-type GaAs(001) has been systematically studied. We observed a nonlinear dependence of the film thickness on molecular length, which is drastically different from monolayer films of the same molecules on metals. For 8 ≤ n ≤ 14, the films are only 3-4.5 A thick, significantly smaller than the corresponding molecular length. For n = 16 and 18, the measured film thicknesses were 9 and 11 A, respectively, consistent with molecules orienting with a tilt angle of ∼60° from the surface normal. Unlike the alkanethiols, the thickness of the 1,8-octanedithiol monolayer is almost the same as its molecular length, indicating that dithiol molecules orient vertically with only one thiol end group bound to the GaAs surface. Additional support for this conclusion comes from the fact that X-ray photoelectron spectroscopy of the 1,8-octanedithiol monolayer clearly resolves two types of S atoms in the monolayer: those bound to the GaAs surface and those existing as free thiols. A suggestion was made on the mechanisms for alkanethiol and alkanedithiol monolayer formation.
Original language | English |
---|---|
Pages (from-to) | 3627-3632 |
Number of pages | 6 |
Journal | Langmuir |
Volume | 22 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2006 Apr 11 |
Externally published | Yes |
ASJC Scopus subject areas
- Materials Science(all)
- Condensed Matter Physics
- Surfaces and Interfaces
- Spectroscopy
- Electrochemistry