Formulation of rod-forming models and their application in spray forming

Hyun Kwang Seok, Hui Choon Lee, Kyu Hwan Oh, Jae Chul Lee, Ho In Lee, Hyung Yong Ra

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)


In rod spray forming, the preform changes its shape continually from that of a disc to a rod (transient-state rod growth) and then maintains its top surface profile once it has settled down (steady-state rod growth). The rod growth mechanism during spray forming was analyzed using rod-forming models. At a sufficiently high substrate rotation velocity, the calculated results based on the three-dimensional time-dependent model (3-D TDM) and the two-dimensional time-dependent model (2-D TDM) were observed to be identical. The calculated results of the rod's top shape, obtained by the TDMs, were almost identical to those obtained by the two-dimensional time-independent model (2-D TIM), which means that there exists steady-state rod growth. The effects of spray-forming parameters, such as initial eccentric distance, substrate withdrawal velocity, and spray angle, on the shape-evolution behavior were analyzed in terms of the vertex growth velocity. The optimum spray-forming condition to minimize transient-state rod growth was also presented. Experimental verification was made to confirm the proposed forming models.

Original languageEnglish
Pages (from-to)1479-1488
Number of pages10
JournalMetallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
Issue number5
Publication statusPublished - 2000
Externally publishedYes

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Metals and Alloys


Dive into the research topics of 'Formulation of rod-forming models and their application in spray forming'. Together they form a unique fingerprint.

Cite this