TY - JOUR
T1 - Functional expression of single-chain variable fragment antibody against c-Met in the cytoplasm of Escherichia coli
AU - Heo, Mi Ae
AU - Kim, Su Hyun
AU - Kim, So Yeon
AU - Kim, Yu Jin
AU - Chung, Junho
AU - Oh, Min Kyu
AU - Lee, Sun Gu
N1 - Funding Information:
This study was supported by the Korean Ministry of Science and Technology through the 21st Century Frontier R&D Program in Microbial Genomics and Applications (Grant MG05-0309-6-0).
Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2006/5
Y1 - 2006/5
N2 - c-Met, a high affinity receptor for hepatocyte growth factor/scatter factor, shown to be overexpressed in a variety of malignant cells, is a potential biomarker as well as a therapeutic target. Thus, single-chain antibody fragment (scFv) specific for c-Met is expected to be efficiently employed in the clinical treatment or imaging of many cancer cells. Here, we constructed the expression system for anti-c-Met scFv fused with T7 tag at its N-terminus using pET vector and investigated the expression conditions to achieve a functional and soluble expression of the scFv in the cytoplasm of recombinant Escherichia coli. The redox potential of E. coli cytoplasm was the most critical factor for the functional expression of anti-c-Met scFv. The employment of a host with oxidizing cytoplasm, E. coli trxB/gor double mutant, improved the productivity of functional anti-c-Met scFv by approximately 10-fold compared to the production of anti-c-Met scFv in the reducing cytoplasm of wild type E. coli. Productivity of functional anti-c-Met scFv could be further enhanced by co-expressing molecular chaperones such as GroELS, trigger factor, and DsbC with the scFv. Coexpression of DsbC increased the yield of functional anti-c-Met scFv about 2.5-fold in the cytoplasm of E. coli trxB/gor mutant compared to the production of scFv without DsbC coexpression. Lowering the IPTG concentration from 1 to 0.05 mM led to the slight enhancement, approximately 1.6-fold, of productivity of functional scFv. Although the use of low temperature for anti-c-Met scFv expression increased the ratio of soluble scFv fraction to insoluble fraction, productivity of soluble scFv decreased owing to the significant reduction of expression rate. The addition of 0.5 M sucrose in the medium inhibited the formation of intracellular insoluble anti-c-Met scFv. To purify the anti-c-Met scFv simply, we fused hexahistidine at the C-terminus of scFv and purified the scFv showing 98% of purity through the interaction between Ni2+ and histidine.
AB - c-Met, a high affinity receptor for hepatocyte growth factor/scatter factor, shown to be overexpressed in a variety of malignant cells, is a potential biomarker as well as a therapeutic target. Thus, single-chain antibody fragment (scFv) specific for c-Met is expected to be efficiently employed in the clinical treatment or imaging of many cancer cells. Here, we constructed the expression system for anti-c-Met scFv fused with T7 tag at its N-terminus using pET vector and investigated the expression conditions to achieve a functional and soluble expression of the scFv in the cytoplasm of recombinant Escherichia coli. The redox potential of E. coli cytoplasm was the most critical factor for the functional expression of anti-c-Met scFv. The employment of a host with oxidizing cytoplasm, E. coli trxB/gor double mutant, improved the productivity of functional anti-c-Met scFv by approximately 10-fold compared to the production of anti-c-Met scFv in the reducing cytoplasm of wild type E. coli. Productivity of functional anti-c-Met scFv could be further enhanced by co-expressing molecular chaperones such as GroELS, trigger factor, and DsbC with the scFv. Coexpression of DsbC increased the yield of functional anti-c-Met scFv about 2.5-fold in the cytoplasm of E. coli trxB/gor mutant compared to the production of scFv without DsbC coexpression. Lowering the IPTG concentration from 1 to 0.05 mM led to the slight enhancement, approximately 1.6-fold, of productivity of functional scFv. Although the use of low temperature for anti-c-Met scFv expression increased the ratio of soluble scFv fraction to insoluble fraction, productivity of soluble scFv decreased owing to the significant reduction of expression rate. The addition of 0.5 M sucrose in the medium inhibited the formation of intracellular insoluble anti-c-Met scFv. To purify the anti-c-Met scFv simply, we fused hexahistidine at the C-terminus of scFv and purified the scFv showing 98% of purity through the interaction between Ni2+ and histidine.
KW - Anti-c-Met scFv
KW - Folding
KW - Molecular chaperones
KW - Soluble expression
UR - http://www.scopus.com/inward/record.url?scp=33646077190&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33646077190&partnerID=8YFLogxK
U2 - 10.1016/j.pep.2005.12.003
DO - 10.1016/j.pep.2005.12.003
M3 - Article
C2 - 16414274
AN - SCOPUS:33646077190
SN - 1046-5928
VL - 47
SP - 203
EP - 209
JO - Protein Expression and Purification
JF - Protein Expression and Purification
IS - 1
ER -