Abstract
We investigated the scaling and topology of engineered urban drainage networks (UDNs) in two cities, and further examined UDN evolution over decades. UDN scaling was analyzed using two power law scaling characteristics widely employed for river networks: (1) Hack's law of length (L)-area (A) [L α Ah] and (2) exceedance probability distribution of upstream contributing area (δ) [P(A≥δ)~aδ-ε]. For the smallest UDNs (<2 km2), length-area scales linearly (h ∼ 1), but power law scaling (h ∼ 0.6) emerges as the UDNs grow. While P(A≥δ) plots for river networks are abruptly truncated, those for UDNs display exponential tempering [P(A≥δ)=aδ-ε exp (-cδ)]. The tempering parameter c decreases as the UDNs grow, implying that the distribution evolves in time to resemble those for river networks. However, the power law exponent ɛ for large UDNs tends to be greater than the range reported for river networks. Differences in generative processes and engineering design constraints contribute to observed differences in the evolution of UDNs and river networks, including subnet heterogeneity and nonrandom branching.
Original language | English |
---|---|
Pages (from-to) | 8966-8979 |
Number of pages | 14 |
Journal | Water Resources Research |
Volume | 53 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2017 Nov |
Bibliographical note
Publisher Copyright:© 2017. American Geophysical Union. All Rights Reserved.
Keywords
- fractal
- infrastructure
- river network
- self-organization
- self-similarity
- urban drainage network
ASJC Scopus subject areas
- Water Science and Technology