Genetic interactions reveal the antagonistic roles of FT/TSF and TFL1 in the determination of inflorescence meristem identity in Arabidopsis

Chunghee Lee, Soo Jin Kim, Suhyun Jin, Hendry Susila, Geummin Youn, Zeeshan Nasim, Hemasundar Alavilli, Kyung Sook Chung, Seong Jeon Yoo, Ji Hoon Ahn

    Research output: Contribution to journalArticlepeer-review

    37 Citations (Scopus)

    Abstract

    During the transition to the reproductive phase, the shoot apical meristem switches from the developmental program that generates vegetative organs to instead produce flowers. In this study, we examined the genetic interactions of FLOWERING LOCUS T (FT)/TWIN SISTER OF FT (TSF) and TERMINAL FLOWER 1 (TFL1) in the determination of inflorescence meristem identity in Arabidopsis thaliana. The ft-10 tsf-1 mutants produced a compact inflorescence surrounded by serrated leaves (hyper-vegetative shoot) at the early bolting stage, as did plants overexpressing TFL1. Plants overexpressing FT or TSF (or both FT and TFL1) generated a terminal flower, as did tfl1-20 mutants. The terminal flower formed in tfl1-20 mutants converted to a hyper-vegetative shoot in ft-10 tsf-1 mutants. Grafting ft-10 tsf-1 or ft-10 tsf-1 tfl1-20 mutant scions to 35S::FT rootstock plants produced a normal inflorescence and a terminal flower in the scion plants, respectively, although both scions showed similar early flowering. Misexpression of FT in the vasculature and in the shoot apex in wild-type plants generated a normal inflorescence and a terminal flower, respectively. By contrast, in ft-10 tsf-1 mutants the vasculature-specific misexpression of FT converted the hyper-vegetative shoot to a normal inflorescence, and in the ft-10 tsf-1 tfl1-20 mutants converted the shoot to a terminal flower. TFL1 levels did not affect the inflorescence morphology caused by FT/TSF overexpression at the early bolting stage. Taking these results together, we proposed that FT/TSF and TFL1 play antagonistic roles in the determination of inflorescence meristem identity, and that FT/TSF are more important than TFL1 in this process.

    Original languageEnglish
    Pages (from-to)452-464
    Number of pages13
    JournalPlant Journal
    Volume99
    Issue number3
    DOIs
    Publication statusPublished - 2019 Aug

    Bibliographical note

    Funding Information:
    We thank Hwajin Sung and Young-Ja Kim for their technical assistance. This work was supported by a National Research Foundation (NRF) of Korea grant funded by the Korean government (NRF-2017R1A2B3009624 to J.H.A.) and Samsung Science and Technology Foundation under project number SSTF-BA1602-12.

    Publisher Copyright:
    © 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd

    Keywords

    • FT
    • TFL1
    • TSF
    • floral homeotic transformation
    • hyper-vegetative shoot
    • inflorescence meristem identity
    • misexpression

    ASJC Scopus subject areas

    • Genetics
    • Plant Science
    • Cell Biology

    Fingerprint

    Dive into the research topics of 'Genetic interactions reveal the antagonistic roles of FT/TSF and TFL1 in the determination of inflorescence meristem identity in Arabidopsis'. Together they form a unique fingerprint.

    Cite this