TY - JOUR
T1 - Geologically controlled agricultural contamination and water-rock interaction in an alluvial aquifer
T2 - Results from a hydrochemical study
AU - Choi, Byoung Young
AU - Yun, Seong Taek
AU - Kim, Kyoung Ho
AU - Kim, Kangjoo
AU - Choh, Suk Joo
N1 - Funding Information:
Acknowledgments This work was supported by a research fund (R01-2007-000-20964-0) from the Korea Science and Engineering Foundation (KOSEF). Prof. Rodney Grapes helped to improve early draft version of this manuscript. Constructive comments provided by anonymous reviewers helped to improve and clarify the manuscript.
PY - 2013/1
Y1 - 2013/1
N2 - Hydrogeochemistry data collected from three multi-level monitoring wells in a sandy alluvial aquifer located in the Keum River watershed, South Korea, are used in this study to evaluate groundwater chemistry change in relation to geologic controls of groundwater recharge, redox condition, water-rock interaction and contamination susceptibility. A silt layer at a depth of about 10 m is a hydrologic barrier which prohibits the continued downflow of groundwater and divides the groundwater into two distinct masses (i. e., shallow 'oxic' groundwater and deeper 'sub-oxic' groundwater) with different redox states and ion chemistry. Compared to 'sub-oxic' water, 'oxic' water has lower SiO2/(Na + K) and higher Ca, NO3 and SO4, indicating significant contamination from agrochemicals and manures. The higher Ca and NO3 but lower HCO3 concentrations in 'oxic' water result from lime dissolution and nitrification. In contrast, 'sub-oxic' water shows increased SiO2 and HCO3, suggesting the effect of water-rock interaction in the aquifer. Potential sources of cations are Na from albite, Mg from chlorite and illite, and K from illite. Vertical fluctuations of cationic composition in 'sub-oxic' water suggest heterogeneity of aquifer mineralogy with depth. Mineral stability calculations show that the chemistry of 'oxic' water plots in the kaolinite field, while that of 'sub-oxic' water plots in the Ca-montmorillonite field and near the kaolinite/montmorillonite equilibrium boundary. Concentrations of dissolved inorganic carbon (DIC) in 'sub-oxic' water are much higher than total alkalinity (HCO3 + CO3), suggesting that CO2 generated by redox reactions such as denitrification, iron reduction and sulfate reduction causes increasing DIC, which also affects the dissolution of silicate minerals in an aquifer free of carbonate minerals.
AB - Hydrogeochemistry data collected from three multi-level monitoring wells in a sandy alluvial aquifer located in the Keum River watershed, South Korea, are used in this study to evaluate groundwater chemistry change in relation to geologic controls of groundwater recharge, redox condition, water-rock interaction and contamination susceptibility. A silt layer at a depth of about 10 m is a hydrologic barrier which prohibits the continued downflow of groundwater and divides the groundwater into two distinct masses (i. e., shallow 'oxic' groundwater and deeper 'sub-oxic' groundwater) with different redox states and ion chemistry. Compared to 'sub-oxic' water, 'oxic' water has lower SiO2/(Na + K) and higher Ca, NO3 and SO4, indicating significant contamination from agrochemicals and manures. The higher Ca and NO3 but lower HCO3 concentrations in 'oxic' water result from lime dissolution and nitrification. In contrast, 'sub-oxic' water shows increased SiO2 and HCO3, suggesting the effect of water-rock interaction in the aquifer. Potential sources of cations are Na from albite, Mg from chlorite and illite, and K from illite. Vertical fluctuations of cationic composition in 'sub-oxic' water suggest heterogeneity of aquifer mineralogy with depth. Mineral stability calculations show that the chemistry of 'oxic' water plots in the kaolinite field, while that of 'sub-oxic' water plots in the Ca-montmorillonite field and near the kaolinite/montmorillonite equilibrium boundary. Concentrations of dissolved inorganic carbon (DIC) in 'sub-oxic' water are much higher than total alkalinity (HCO3 + CO3), suggesting that CO2 generated by redox reactions such as denitrification, iron reduction and sulfate reduction causes increasing DIC, which also affects the dissolution of silicate minerals in an aquifer free of carbonate minerals.
KW - Agricultural contamination
KW - Heterogeneous alluvial aquifer
KW - Hydrogeochemistry
KW - Redox condition
KW - Water-rock interaction
UR - http://www.scopus.com/inward/record.url?scp=84871929645&partnerID=8YFLogxK
U2 - 10.1007/s12665-012-1731-y
DO - 10.1007/s12665-012-1731-y
M3 - Article
AN - SCOPUS:84871929645
SN - 1866-6280
VL - 68
SP - 203
EP - 217
JO - Environmental Earth Sciences
JF - Environmental Earth Sciences
IS - 1
ER -