Abstract
Face super-resolution is a domain-specific super-resolution task to generate a high-resolution facial image from a low-resolution one. In this paper, we propose a novel face super-resolution network, called CollageNet, to super-resolve an input image by exploiting a reference image of an identical person at the patch level. First, we extract feature pyramids from input and reference images to exploit multi-scale information hierarchically. Next, we compute the patch-wise similarities between input and reference feature pyramids and select the $K$ most similar reference patches to each input patch. Then, we compose a collaged feature pyramid by gluing those selected patches together. Finally, we obtain a super-resolved image by blending the collaged feature pyramid and the input feature. Experimental results demonstrate that the proposed CollageNet yields state-of-the-art performances.
Original language | English |
---|---|
Pages (from-to) | 169321-169334 |
Number of pages | 14 |
Journal | IEEE Access |
Volume | 9 |
DOIs | |
Publication status | Published - 2021 |
Bibliographical note
Publisher Copyright:© 2013 IEEE.
Keywords
- Face super-resolution
- convolutional neural network
- patch matching
- reference-based super-resolution
ASJC Scopus subject areas
- General Computer Science
- General Materials Science
- General Engineering
- Electrical and Electronic Engineering