Abstract
Glutathione (GSH), the most abundant nonprotein thiol functioning as an antioxidant, plays critical roles in maintaining the core functions of mesenchymal stem cells (MSCs), which are used as a cellular immunotherapy for graft-versus-host disease (GVHD). However, the role of GSH dynamics in MSCs remains elusive. Genome-wide gene expression profiling and high-throughput live-cell imaging assays revealed that CREB1 enforced the GSH-recovering capacity (GRC) of MSCs through NRF2 by directly up-regulating NRF2 target genes responsible for GSH synthesis and redox cycling. MSCs with enhanced GSH levels and GRC mediated by CREB1-NRF2 have improved self-renewal, migratory, anti-inflammatory, and T cell suppression capacities. Administration of MSCs overexpressing CREB1-NRF2 target genes alleviated GVHD in a humanized mouse model, resulting in improved survival, decreased weight loss, and reduced histopathologic damages in GVHD target organs. Collectively, these findings demonstrate the molecular and functional importance of the CREB1-NRF2 pathway in maintaining MSC GSH dynamics, determining therapeutic outcomes for GVHD treatment.
Original language | English |
---|---|
Article number | eaba1334 |
Journal | Science Advances |
Volume | 6 |
Issue number | 16 |
DOIs | |
Publication status | Published - 2020 Apr |
Bibliographical note
Publisher Copyright:© 2020 The Authors.
ASJC Scopus subject areas
- General