Abstract
Dependence of the electrical properties on grain-boundary plane orientation is examined by a combination of high-resolution transmission electron microscopy, impedance spectroscopy, and electron energy-loss spectrometry using two kinds of SrTiO3 Σ5 ([1 0 0]/36.8°) bicrystalline grain boundaries: symmetric (3 1 0) (18.4°/18.4°) and asymmetric (8.4°/28.4°). While the symmetric grain boundary is observed to be straight with the symmetric (3 1 0)//(3 1 0) plane orientation, the asymmetric grain boundary is faceted into symmetric (3 1 0)//(3 1 0) and (2 1 0)//(2 1 0), and asymmetric (1 0 0)//(4 3 0). Grain-boundary impedance is observed only in the asymmetric grain boundary, and the electron energy-loss spectrometry quantification indicates that the asymmetric (1 0 0)//(4 3 0) facets are more oxygen-deficient than the symmetric ones. The results suggest that the asymmetric (1 0 0)//(4 3 0) facets are the most resistive among the three different facets.
Original language | English |
---|---|
Pages (from-to) | 4993-4997 |
Number of pages | 5 |
Journal | Acta Materialia |
Volume | 56 |
Issue number | 18 |
DOIs | |
Publication status | Published - 2008 Oct |
Keywords
- Annealing
- Electron energy-loss spectroscopy
- Grain-boundary structure
- Strontium titanate
- Transmission electron microscopy
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Polymers and Plastics
- Metals and Alloys