Growth and properties of ZnO nanoblade and nanoflower prepared by ultrasonic pyrolysis

Hyo Won Sun, Gil Young Kim, Yeon Sik Jung, Won Kook Choi, Dongjin Byun

Research output: Contribution to journalArticlepeer-review

78 Citations (Scopus)


ZnO nanoblades and nanoflowers are synthesized using zinc acetate dihydrate Zn(CH 3COO) 2·2H 2O dissolved in distilled water by ultrasonic pyrolysis at 380-500°C. Thermogravimetry-differential scanning calorimetry, x-ray diffraction, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, and low-temperature photoluminescence (PL) were used to characterize the thermal properties, crystalline and optical features of the ZnO nanostructures. The results showed that at 400°C the formation of nanoblades resulted from the simultaneous precipitation and nucleation in zinc acetate precursor. At an elevated temperature of 450°C, decomposition was almost advanced and thus the size of nanopetal became smaller and aggregates became larger by as much as 60 nm. The formation of aggregates is explained in terms of random nucleation model. Through PL measurement, nanoblade showed a strong near band-edge emission with negligible deep-level emission and free exciton band-gap energy E g(0) = 3.372 eV and Debye temperature β=477±65 K by the fitting curve of free exciton peak as a function of temperature to Varshni equation, E g(T)=E g(0)- αT 2(β+T), which are very close to bulk ZnO.

Original languageEnglish
Article number044305
JournalJournal of Applied Physics
Issue number4
Publication statusPublished - 2005 Feb 15

ASJC Scopus subject areas

  • Physics and Astronomy(all)


Dive into the research topics of 'Growth and properties of ZnO nanoblade and nanoflower prepared by ultrasonic pyrolysis'. Together they form a unique fingerprint.

Cite this