Abstract
α-Ga2O3 has the corundum structure analogous to that of α-Al2O3. The bandgap energy of α-Ga2O3 is 5.3 eV and is greater than that of β-Ga2O3, making the α-phase attractive for devices that benefit from its wider bandgap. The O-H and O-D centers produced by the implantation of H+ and D+ into α-Ga2O3 have been studied by infrared spectroscopy and complementary theory. An O-H line at 3269 cm-1 is assigned to H complexed with a Ga vacancy (VGa), similar to the case of H trapped by an Al vacancy (VAl) in α-Al2O3. The isolated VGa and VAl defects in α-Ga2O3 and α-Al2O3 are found by theory to have a "shifted"vacancy-interstitial-vacancy equilibrium configuration, similar to VGa in β-Ga2O3, which also has shifted structures. However, the addition of H causes the complex with H trapped at an unshifted vacancy to have the lowest energy in both α-Ga2O3 and α-Al2O3.
Original language | English |
---|---|
Article number | 192101 |
Journal | Applied Physics Letters |
Volume | 120 |
Issue number | 19 |
DOIs | |
Publication status | Published - 2022 May 9 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2022 Author(s).
ASJC Scopus subject areas
- Physics and Astronomy (miscellaneous)