TY - JOUR
T1 - Hierarchical anatomical brain networks for MCI prediction
T2 - Revisiting volumetric measures
AU - Zhou, Luping
AU - Wang, Yaping
AU - Li, Yang
AU - Yap, Pew Thian
AU - Shen, Dinggang
AU - Alzheimer's Disease Neuroimaging Initiative (ADNI), Disease Neuroimaging Initiative (ADNI)
N1 - Funding Information:
Disclosure Statement. Both the normal control and MCI subjects used in this study were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) ( www.loni.ucla.eduADNI ). The ADNI investigators contributed to the design and implementation of ADNI and/or provided data but did not participate in the analysis or writing of this report. The complete listing of ADNI investigators is available at http://www.loni.ucla.edu/ADNI/Collaboration/ADNI_Manuscript_Citations.pdf . The following statements were cited from ADNI: Data collection and sharing for ADNI was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech, GE Healthcare, GlaxoSmithKline, Innogenetics, Johnson and Johnson, Eli Lilly and Co., Medpace, Inc., Merck and Co., Inc., Novartis AG, Pfizer Inc, F. Hoffman-La Roche, Schering-Plough, Synarc, Inc., as well as non-profit partners the Alzheimer's Association and Alzheimer's Drug Discovery Foundation, with participation from the U.S. Food and Drug Administration. Private sector contributions to ADNI are facilitated by the Foundation for the National Institutes of Health ( www.fnih.org ). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles.
PY - 2011
Y1 - 2011
N2 - Owning to its clinical accessibility, T1-weighted MRI (Magnetic Resonance Imaging) has been extensively studied in the past decades for prediction of Alzheimer's disease (AD) and mild cognitive impairment (MCI). The volumes of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) are the most commonly used measurements, resulting in many successful applications. It has been widely observed that disease-induced structural changes may not occur at isolated spots, but in several inter-related regions. Therefore, for better characterization of brain pathology, we propose in this paper a means to extract inter-regional correlation based features from local volumetric measurements. Specifically, our approach involves constructing an anatomical brain network for each subject, with each node representing a Region of Interest (ROI) and each edge representing Pearson correlation of tissue volumetric measurements between ROI pairs. As second order volumetric measurements, network features are more descriptive but also more sensitive to noise. To overcome this limitation, a hierarchy of ROIs is used to suppress noise at different scales. Pairwise interactions are considered not only for ROIs with the same scale in the same layer of the hierarchy, but also for ROIs across different scales in different layers. To address the high dimensionality problem resulting from the large number of network features, a supervised dimensionality reduction method is further employed to embed a selected subset of features into a low dimensional feature space, while at the same time preserving discriminative information. We demonstrate with experimental results the efficacy of this embedding strategy in comparison with some other commonly used approaches. In addition, although the proposed method can be easily generalized to incorporate other metrics of regional similarities, the benefits of using Pearson correlation in our application are reinforced by the experimental results. Without requiring new sources of information, our proposed approach improves the accuracy of MCI prediction from 80.83% (of conventional volumetric features) to 84.35% (of hierarchical network features), evaluated using data sets randomly drawn from the ADNI (Alzheimer's Disease Neuroimaging Initiative) dataset.
AB - Owning to its clinical accessibility, T1-weighted MRI (Magnetic Resonance Imaging) has been extensively studied in the past decades for prediction of Alzheimer's disease (AD) and mild cognitive impairment (MCI). The volumes of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) are the most commonly used measurements, resulting in many successful applications. It has been widely observed that disease-induced structural changes may not occur at isolated spots, but in several inter-related regions. Therefore, for better characterization of brain pathology, we propose in this paper a means to extract inter-regional correlation based features from local volumetric measurements. Specifically, our approach involves constructing an anatomical brain network for each subject, with each node representing a Region of Interest (ROI) and each edge representing Pearson correlation of tissue volumetric measurements between ROI pairs. As second order volumetric measurements, network features are more descriptive but also more sensitive to noise. To overcome this limitation, a hierarchy of ROIs is used to suppress noise at different scales. Pairwise interactions are considered not only for ROIs with the same scale in the same layer of the hierarchy, but also for ROIs across different scales in different layers. To address the high dimensionality problem resulting from the large number of network features, a supervised dimensionality reduction method is further employed to embed a selected subset of features into a low dimensional feature space, while at the same time preserving discriminative information. We demonstrate with experimental results the efficacy of this embedding strategy in comparison with some other commonly used approaches. In addition, although the proposed method can be easily generalized to incorporate other metrics of regional similarities, the benefits of using Pearson correlation in our application are reinforced by the experimental results. Without requiring new sources of information, our proposed approach improves the accuracy of MCI prediction from 80.83% (of conventional volumetric features) to 84.35% (of hierarchical network features), evaluated using data sets randomly drawn from the ADNI (Alzheimer's Disease Neuroimaging Initiative) dataset.
UR - http://www.scopus.com/inward/record.url?scp=79960471063&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0021935
DO - 10.1371/journal.pone.0021935
M3 - Article
C2 - 21818280
AN - SCOPUS:79960471063
SN - 1932-6203
VL - 6
JO - PloS one
JF - PloS one
IS - 7
M1 - e21935
ER -