Hierarchical hollow microspheres grafted with Co nanoparticle-embedded bamboo-like N-doped carbon nanotube bundles as ultrahigh rate and long-life cathodes for rechargeable lithium-oxygen batteries

Jung Hyun Kim, Seung Keun Park, Yeon Jong Oh, Yun Chan Kang

    Research output: Contribution to journalArticlepeer-review

    31 Citations (Scopus)

    Abstract

    Rational design of efficient, affordable, and durable electrocatalysts for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is essential for rechargeable lithium-oxygen (Li–O2) batteries. We present for the first time hierarchical hollow microspheres grafted with metallic Co-embedded bamboo-like N-doped carbon nanotube bundles (Co-b-NCNTs hollow microspheres) as oxygen electrodes for Li-air batteries. Hierarchical composite microspheres are prepared via a facile two-step process involving synthesis of Co3O4-MgO hollow microspheres by spray pyrolysis, followed by internal and external growth of bamboo-like NCNTs in the shells. During post-treatment, metallic Co and MgO nanoparticles play key respective roles in catalyzing in-situ growth of NCNTs and maintaining structural integrity of the composites. The hierarchical composite structure with Co and N doping not only provides ample active sites for the OER and ORR, but also sufficient space for storing produced Li2O2. Thus, Co-b-NCNTs hollow microspheres exhibit high initial round-trip efficiency, long-term cycling and ultrahigh rate performances when applied as oxygen electrodes for Li–O2 batteries. The initial discharge capacity and round-trip efficiency at a current density of 200 mA g−1 are 28,968 mA h g−1 and 78.2%, respectively. Specific capacities at cutoff capacities of 500 and 1000 mA h g−1 are stable for 201 and 157 cycles, respectively.

    Original languageEnglish
    Pages (from-to)2500-2510
    Number of pages11
    JournalChemical Engineering Journal
    Volume334
    DOIs
    Publication statusPublished - 2018 Feb 15

    Bibliographical note

    Publisher Copyright:
    © 2017 Elsevier B.V.

    Keywords

    • Carbon nanotubes
    • Cathode material
    • Hierarchical structure
    • Li-O batteries
    • Nanostructured material
    • Spray pyrolysis

    ASJC Scopus subject areas

    • General Chemistry
    • Environmental Chemistry
    • General Chemical Engineering
    • Industrial and Manufacturing Engineering

    Fingerprint

    Dive into the research topics of 'Hierarchical hollow microspheres grafted with Co nanoparticle-embedded bamboo-like N-doped carbon nanotube bundles as ultrahigh rate and long-life cathodes for rechargeable lithium-oxygen batteries'. Together they form a unique fingerprint.

    Cite this