TY - GEN
T1 - Hierarchical shape statistical model for segmentation of lung fields in chest radiographs
AU - Shi, Yonghong
AU - Shen, Dinggang
N1 - Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2008
Y1 - 2008
N2 - The standard Active Shape Model (ASM) generally uses a whole population to train a single PCA-based shape model for segmentation of all testing samples. Since some testing samples can be similar to only sub-population of training samples, it will be more effective if particular shape statistics extracted from the respective sub-population can be used for guiding image segmentation. Accordingly, we design a set of hierarchical shape statistical models, including a whole-population shape model and a series of sub-population models. The whole-population shape model is used to guide the initial segmentation of the testing sample, and the initial segmentation result is then used to select a suitable sub-population shape model according to the shape similarity between the testing sample and each sub-population. By using the selected sub-population shape model, the segmentation result can be further refined. To achieve this segmentation process, several particular steps are designed next. First, all linearly aligned samples in the whole population are used to generate a whole-population shape model. Second, an affinity propagation method is used to cluster all linearly aligned samples into several clusters, to determine the samples belonging to the same sub-populations. Third, the original samples of each sub-population are linearly aligned to their own mean shape, and the respective sub-population shape model is built using the newly aligned samples in this sub-population. By using all these three steps, we can generate hierarchical shape statistical models to guide image segmentation. Experimental results show that the proposed method can significantly improve the segmentation performance, compared to conventional ASM.
AB - The standard Active Shape Model (ASM) generally uses a whole population to train a single PCA-based shape model for segmentation of all testing samples. Since some testing samples can be similar to only sub-population of training samples, it will be more effective if particular shape statistics extracted from the respective sub-population can be used for guiding image segmentation. Accordingly, we design a set of hierarchical shape statistical models, including a whole-population shape model and a series of sub-population models. The whole-population shape model is used to guide the initial segmentation of the testing sample, and the initial segmentation result is then used to select a suitable sub-population shape model according to the shape similarity between the testing sample and each sub-population. By using the selected sub-population shape model, the segmentation result can be further refined. To achieve this segmentation process, several particular steps are designed next. First, all linearly aligned samples in the whole population are used to generate a whole-population shape model. Second, an affinity propagation method is used to cluster all linearly aligned samples into several clusters, to determine the samples belonging to the same sub-populations. Third, the original samples of each sub-population are linearly aligned to their own mean shape, and the respective sub-population shape model is built using the newly aligned samples in this sub-population. By using all these three steps, we can generate hierarchical shape statistical models to guide image segmentation. Experimental results show that the proposed method can significantly improve the segmentation performance, compared to conventional ASM.
KW - Active shape model
KW - Chest radiograph
KW - Hierarchical shape statistics
UR - http://www.scopus.com/inward/record.url?scp=58849128362&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=58849128362&partnerID=8YFLogxK
U2 - 10.1007/978-3-540-85988-8_50
DO - 10.1007/978-3-540-85988-8_50
M3 - Conference contribution
C2 - 18979774
AN - SCOPUS:58849128362
SN - 354085987X
SN - 9783540859871
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 417
EP - 424
BT - Medical Image Computing and Computer-Assisted Intervention - MICCAI 2008 - 11th International Conference, Proceedings
T2 - 11th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2008
Y2 - 6 September 2008 through 10 September 2008
ER -