Abstract
Systems exhibiting degeneracies known as exceptional points have remarkable properties with powerful applications, particularly in sensor design. These degeneracies are formed when eigenstates coincide, and the remarkable effects are exaggerated by increasing the order of the exceptional point (i.e., the number of coincident eigenstates). In this work, we use asymptotic techniques to study (Formula presented.) -symmetric arrays of many subwavelength resonators and search for high-order asymptotic exceptional points. This analysis reveals the range of different configurations that can give rise to such exceptional points and provides efficient techniques to compute them. We also show how systems exhibiting high-order exceptional points can be used for sensitivity enhancement.
Original language | English |
---|---|
Pages (from-to) | 440-462 |
Number of pages | 23 |
Journal | Studies in Applied Mathematics |
Volume | 146 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2021 Feb |
Keywords
- PT symmetry
- eigenvalue shift
- enhanced sensing
- high-order exceptional points
- metamaterials
- subwavelength resonance
ASJC Scopus subject areas
- Applied Mathematics