Abstract
A novel strategy to fabricate high-performance thin-film protonic ceramic fuel cells (PCFCs) is introduced by building thin-film PCFC components, including BaCe0.55Zr0.3Y0.15O3-δ (BCZY) electrolytes (1.5 μm) over anode supports consisting of non-proton-conducting ceramic and metal catalytic phases. Ni-yttria-stabilized zirconia (YSZ) was used as supports in this study, which is superior in terms of its well-established facile fabrication process, along with physical and chemical stability, compared to proton-conducting materials. The Ni-YSZ supports provided a flat and smooth deposition surface that facilitates the deposition of the thin film components. A Ni-BCZY anode (∼3 μm), a dense BCZY electrolyte layer (∼1.5 μm), and a porous Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode (∼2 μm) were sequentially fabricated over the Ni-YSZ substrates using pulsed laser deposition, followed by post-annealing, and the process was optimized for each component. A fully integrated thin-film PCFC microstructure was confirmed, resulting in high open circuit voltages exceeding 1 V at operating temperatures in the range of 450-650 °C. A promising fuel cell performance was obtained using the proposed fuel cell configuration, reaching a peak power density of 742 mW cm-2 at 650 °C.
Original language | English |
---|---|
Pages (from-to) | 6395-6404 |
Number of pages | 10 |
Journal | Journal of Materials Chemistry A |
Volume | 4 |
Issue number | 17 |
DOIs | |
Publication status | Published - 2016 |
Bibliographical note
Funding Information:The authors are grateful to the Global Frontier R&D Program at the Center for Multiscale Energy Systems (Grant No. NRF-2015M3A6A7065442) of the National Research Foundation (NRF) of Korea, funded by the Ministry of Science, ICT & Future Planning (MSIP), and to the Institutional Research Program (2E26081) of Korea Institute of Science and Technology (KIST) for financial support. This work was also supported by a National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (Grant No. NRF-2013R1A1A1A05013794) and the Brain Korea 21 Plus program.
Publisher Copyright:
© 2016 The Royal Society of Chemistry.
ASJC Scopus subject areas
- General Chemistry
- Renewable Energy, Sustainability and the Environment
- General Materials Science