Abstract
In this study, aqueous phase reforming (APR) of xylose was conducted over highly dispersed Pt nanoparticles supported on a γ-Al2O3 support (Pt-SNP). Formation of small Pt nanoparticles was confirmed by X-ray diffraction and transmission electron microscopy, which revealed that most of the particles ranged between 0.8 and 1.6 nm in size and the average particle size was 1.3 nm. Temperature-programmed reduction analysis indicated that these small Pt nanoparticles were highly reducible under the reducing environment compared to the commercial Pt/γ-Al2O3 catalysts (Pt-commercial). The catalytic activities of both Pt-SNP and Pt-commercial catalysts were examined in a semi-batch autoclave reactor system for the APR of xylose. It was found that Pt-SNP showed higher carbon to gas conversion with high hydrogen selectivity than Pt-commercial. This was likely due to the increased density of edge sites in the Pt-SNP catalyst that facilitated the cleavage of the C–C bonds rather than the C–O bonds, leading to greater hydrogen production. Furthermore, the Pt-SNP catalyst showed better carbon deposit resistance as compared to Pt-commercial. The amount of carbon deposition on the Pt-SNP catalyst surface and the organic carbon species dissolved in the post-reaction xylose solution were significantly lower compared to that of Pt-commercial. Finally, high purity hydrogen production was achieved using a continuous fixed-bed hybrid reactor including an aqueous phase reformer and a home-made Pd/Ta dense metallic composite membrane. A stable hydrogen gas production (99.999%) was obtained over the Pt-SNP catalyst, which demonstrated the success of a potentially commercial APR reactor system that continuously converted the aqueous xylose solution to hydrogen with high purity.
Original language | English |
---|---|
Pages (from-to) | 13848-13861 |
Number of pages | 14 |
Journal | International Journal of Hydrogen Energy |
Volume | 45 |
Issue number | 27 |
DOIs | |
Publication status | Published - 2020 May 18 |
Keywords
- APR
- Aqueous phase reforming
- Biomass
- Hydrogen
- Platinum
- Xylose
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Condensed Matter Physics
- Energy Engineering and Power Technology