Abstract
Highly active and stable hydrogen production at high current densities is required for practical application of electrocatalytic water splitting. In this study, highly active self-supporting electrodes with excellent durability were designed and developed for high-performance overall water splitting at a high current density. First, a colloid-based dip-coating method using porous carbon cloth (PCC) was introduced to obtain uniformly coated Ni and Fe nanoparticles on a conductive substrate. Then, the desired phase transitions of Ni and Fe to Ni2P and FeP, respectively, proceeded by thermal phosphidation at optimum temperature. The uniformly interconnected Ni2P layers on the PCC substrate (Ni2P@PCC) and FeP layers on the PCC substrate (FeP@PCC) exhibited outstanding oxygen and hydrogen evolution reactions, respectively. When each electrode was adopted as an anode and a cathode for the overall water splitting cell, excellent performance was achieved, with a low operational voltage of 1.76 V and high durability for 100 hours at a high current density of 50 mA cm−2.
Original language | English |
---|---|
Pages (from-to) | 11894-11907 |
Number of pages | 14 |
Journal | International Journal of Energy Research |
Volume | 44 |
Issue number | 14 |
DOIs | |
Publication status | Published - 2020 Nov 1 |
Bibliographical note
Publisher Copyright:© 2020 John Wiley & Sons Ltd
Keywords
- porous carbon cloth
- self-supporting electrodes
- transition metal phosphides
- water splitting
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- Nuclear Energy and Engineering
- Fuel Technology
- Energy Engineering and Power Technology