TY - JOUR
T1 - Highly Bright and Photostable Li(Gd,Y)F4:Yb,Er/LiGdF4 Core/Shell Upconversion Nanophosphors for Bioimaging Applications
AU - Shin, Jeehae
AU - Kim, Youngsun
AU - Lee, Jiyeon
AU - Kim, Sehoon
AU - Jang, Ho Seong
N1 - Funding Information:
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2016R1A2B2013629) and the Pioneer Research Center Program through the NRF funded by the Ministry of Science, ICT and Future Planning (NRF-2013M3C1A3065040).
Publisher Copyright:
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2017/1/1
Y1 - 2017/1/1
N2 - Intense green-emitting Li(Gd,Y)F4:Yb,Er/LiGdF4 core/shell (C/S) upconversion nanophosphors (UCNPs) with a tetragonal bipyramidal morphology are synthesized. The morphology and UC luminescence of the Li(Gd,Y)F4:Yb,Er UCNPs are significantly affected by the Li precursors, and bright UC green-emitting Li(Gd,Y)F4:Yb,Er UCNPs with a tetragonal bipyramidal shape, i.e., UC tetragonal bipyramids (UCTBs), are synthesized using LiOH·H2O as a Li precursor. A LiGdF4 shell is grown on the Li(Gd,Y)F4:Yb,Er UCTBs, and the C/S UCNPs exhibit 4.7 times higher luminescence intensity than core UCTBs. The C/S UCNPs show a high absolute UC quantum yield of 4.6% under excitation with 980 nm near infrared (NIR) light, and the UC luminescence from the C/S UCNPs is stable under continuous irradiation with the 980 nm NIR laser for 1 h. The hydrophobic surfaces of the as-synthesized C/S UCNPs are modified to hydrophilic surfaces by using poly(acrylic acid) (PAA) for bioimaging applications. They are applied to human cervical adenocarcinoma (HeLa) cell imaging and SK-MEL-2 melanoma cell imaging and in vivo imaging, including subcutaneous and intramuscular imaging, and UC luminescence images with high signal-to-noise ratio are obtained. Furthermore, sentinel-lymph-node imaging is successfully conducted with the PAA-capped Li(Gd,Y)F4:Yb,Er/LiGdF4 C/S UCNPs under illumination with NIR light.
AB - Intense green-emitting Li(Gd,Y)F4:Yb,Er/LiGdF4 core/shell (C/S) upconversion nanophosphors (UCNPs) with a tetragonal bipyramidal morphology are synthesized. The morphology and UC luminescence of the Li(Gd,Y)F4:Yb,Er UCNPs are significantly affected by the Li precursors, and bright UC green-emitting Li(Gd,Y)F4:Yb,Er UCNPs with a tetragonal bipyramidal shape, i.e., UC tetragonal bipyramids (UCTBs), are synthesized using LiOH·H2O as a Li precursor. A LiGdF4 shell is grown on the Li(Gd,Y)F4:Yb,Er UCTBs, and the C/S UCNPs exhibit 4.7 times higher luminescence intensity than core UCTBs. The C/S UCNPs show a high absolute UC quantum yield of 4.6% under excitation with 980 nm near infrared (NIR) light, and the UC luminescence from the C/S UCNPs is stable under continuous irradiation with the 980 nm NIR laser for 1 h. The hydrophobic surfaces of the as-synthesized C/S UCNPs are modified to hydrophilic surfaces by using poly(acrylic acid) (PAA) for bioimaging applications. They are applied to human cervical adenocarcinoma (HeLa) cell imaging and SK-MEL-2 melanoma cell imaging and in vivo imaging, including subcutaneous and intramuscular imaging, and UC luminescence images with high signal-to-noise ratio are obtained. Furthermore, sentinel-lymph-node imaging is successfully conducted with the PAA-capped Li(Gd,Y)F4:Yb,Er/LiGdF4 C/S UCNPs under illumination with NIR light.
KW - lanthanide doping
KW - luminescence
KW - lymph-node imaging
KW - nanophosphors
KW - upconversion
UR - http://www.scopus.com/inward/record.url?scp=84991671986&partnerID=8YFLogxK
U2 - 10.1002/ppsc.201600183
DO - 10.1002/ppsc.201600183
M3 - Article
AN - SCOPUS:84991671986
SN - 0934-0866
VL - 34
JO - Particle and Particle Systems Characterization
JF - Particle and Particle Systems Characterization
IS - 1
M1 - 1600183
ER -