Abstract
Here, we report on a highly conductive, stretchable, and transparent electrode of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) fabricated via modification with triblock copolymer, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO20-PPO70-PEO20, Pluronic P123), and post-treatment with sulfuric acid. The fabricated electrode exhibits high transparency (89%), high electrical conductivity (∼1700 S/cm), and minimal change in resistance (∼4%) under repetitive stretch-release cycles at 40% tensile strain after stabilization. P123 acts as a secondary dopant and plasticizer, resulting in enhanced electrical conductivity and stretchability of PEDOT:PSS. Furthermore, after sulfuric acid post-treatment, P123 helps the electrode to maintain its stretchability. A successful demonstration of the stretchable interconnection was shown by stretching the P123-modified PEDOT:PSS electrodes, which were connected with light-emitting diodes (LEDs) in series. Finally, a stretchable and transparent touch sensor consisting of our fabricated electrodes and an LED array and stretchable semitransparent supercapacitor were presented, suggesting a great potential of our electrodes in the application to various deformable devices.
Original language | English |
---|---|
Pages (from-to) | 28027-28035 |
Number of pages | 9 |
Journal | ACS Applied Materials and Interfaces |
Volume | 10 |
Issue number | 33 |
DOIs | |
Publication status | Published - 2018 Aug 22 |
Bibliographical note
Publisher Copyright:Copyright © 2018 American Chemical Society.
Keywords
- PEDOT:PSS
- stretchable electronics
- stretchable transparent electrode
- sulfuric acid treatment
- triblock copolymer
ASJC Scopus subject areas
- General Materials Science