Abstract
The precise and reversible detection of hydrogen sulfide (H2S) at high humidity condition, a malodorous and harmful volatile sulfur compound, is essential for the self-assessment of oral diseases, halitosis, and asthma. However, the selective and reversible detection of trace concentrations of H2S (≈0.1 ppm) in high humidity conditions (exhaled breath) is challenging because of irreversible H2S adsorption/desorption at the surface of chemiresistors. The study reports the synthesis of Fe-doped CuO hollow spheres as H2S gas-sensing materials via spray pyrolysis. 4 at.% of Fe-doped CuO hollow spheres exhibit high selectivity (response ratio ≥ 34.4) over interference gas (ethanol, 1 ppm) and reversible sensing characteristics (100% recovery) to 0.1 ppm of H2S under high humidity (relative humidity 80%) at 175 °C. The effect of multi-valent transition metal ion doping into CuO on sensor reversibility is confirmed through the enhancement of recovery kinetics by doping 4 at.% of Ti- or Nb ions into CuO sensors. Mechanistic details of these excellent H2S sensing characteristics are also investigated by analyzing the redox reactions and the catalytic activity change of the Fe-doped CuO sensing materials. The selective and reversible detection of H2S using the Fe-doped CuO sensor suggested in this work opens a new possibility for halitosis self-monitoring.
Original language | English |
---|---|
Article number | 2308963 |
Journal | Small |
Volume | 20 |
Issue number | 31 |
DOIs | |
Publication status | Published - 2024 Aug 1 |
Bibliographical note
Publisher Copyright:© 2024 Wiley-VCH GmbH.
Keywords
- breath hydrogen sulfide
- gas sensors
- halitosis
- oxide semiconductor
- redox reaction
ASJC Scopus subject areas
- Biotechnology
- General Chemistry
- Biomaterials
- General Materials Science
- Engineering (miscellaneous)