Histone deficiency and accelerated replication stress in T cell aging

Chulwoo Kim, Jun Jin, Zhongde Ye, Rohit R. Jadhav, Claire E. Gustafson, Bin Hu, Wenqiang Cao, Lu Tian, Cornelia M. Weyand, Jörg J. Goronzy

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

With increasing age, individuals are more vulnerable to viral infections such as with influenza or the SARS-CoV-2 virus. One age-associated defect in human T cells is the reduced expression of miR-181a. miR-181ab1 deficiency in peripheral murine T cells causes delayed viral clearance after infection, resembling human immune aging. Here we show that naive T cells from older individuals as well as miR-181ab1–deficient murine T cells develop excessive replication stress after activation, due to reduced histone expression and delayed S-phase cell cycle progression. Reduced histone expression was caused by the miR-181a target SIRT1 that directly repressed transcription of histone genes by binding to their promoters and reducing histone acetylation. Inhibition of SIRT1 activity or SIRT1 silencing increased histone expression, restored cell cycle progression, diminished the replication-stress response, and reduced the production of inflammatory mediators in replicating T cells from old individuals. Correspondingly, treatment with SIRT1 inhibitors improved viral clearance in mice with miR-181a–deficient T cells after LCMV infection. In conclusion, SIRT1 inhibition may be beneficial to treat systemic viral infection in older individuals by targeting antigen-specific T cells that develop replication stress due to miR-181a deficiency.

Original languageEnglish
Article numbere143632
JournalJournal of Clinical Investigation
Volume131
Issue number11
DOIs
Publication statusPublished - 2021 Jun

Bibliographical note

Publisher Copyright:
© 2021, American Society for Clinical Investigation.

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'Histone deficiency and accelerated replication stress in T cell aging'. Together they form a unique fingerprint.

Cite this