Abstract
Chromatin configuration is critical for establishing tissue identity and changes substantially during tissue identity transitions. The crucial scientific and agricultural technology of in vitro tissue culture exploits callus formation from diverse tissue explants and tissue regeneration via de novo organogenesis. We investigated the dynamic changes in H3ac and H3K4me3 histone modifications during leaf-to-callus transition in Arabidopsis thaliana. We analyzed changes in the global distribution of H3ac and H3K4me3 during the leaf-to-callus transition, focusing on transcriptionally active regions in calli relative to leaf explants, defined by increased accumulation of both H3ac and H3K4me3. Peptide signaling was particularly activated during callus formation; the peptide hormones RGF3, RGF8, PIP1 and PIPL3 were upregulated, promoting callus proliferation and conferring competence for de novo shoot organogenesis. The corresponding peptide receptors were also implicated in peptide-regulated callus proliferation and regeneration capacity. The effect of peptide hormones in plant regeneration is likely at least partly conserved in crop plants. Our results indicate that chromatin-dependent regulation of peptide hormone production not only stimulates callus proliferation but also establishes pluripotency, improving the overall efficiency of two-step regeneration in plant systems.
Original language | English |
---|---|
Pages (from-to) | 1068-1083 |
Number of pages | 16 |
Journal | New Phytologist |
Volume | 242 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2024 May |
Bibliographical note
Publisher Copyright:© 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation.
Keywords
- Arabidopsis thaliana
- callus proliferation
- chromatin landscape
- de novo shoot organogenesis
- peptide hormone
- two-step plant regeneration
ASJC Scopus subject areas
- Physiology
- Plant Science