Abstract
Motivation: Capillary electrophoresis (CE) of nucleic acids is a workhorse technology underlying high-throughput genome analysis and large-scale chemical mapping for nucleic acid structural inference. Despite the wide availability of CE-based instruments, there remain challenges in leveraging their full power for quantitative analysis of RNA and DNA structure, thermodynamics and kinetics. In particular, the slow rate and poor automation of available analysis tools have bottlenecked a new generation of studies involving hundreds of CE profiles per experiment. Results: We propose a computational method called high-throughput robust analysis for capillary electrophoresis (HiTRACE) to automate the key tasks in large-scale nucleic acid CE analysis, including the profile alignment that has heretofore been a rate-limiting step in the highest throughput experiments. We illustrate the application of HiTRACE on 13 datasets representing 4 different RNAs, 3 chemical modification strategies and up to 480 single mutant variants; the largest datasets each include 87 360 bands. By applying a series of robust dynamic programming algorithms, HiTRACE outperforms prior tools in terms of alignment and fitting quality, as assessed by measures including the correlation between quantified band intensities between replicate datasets. Furthermore, while the smallest of these datasets required 7-10 h of manual intervention using prior approaches, HiTRACE quantitation of even the largest datasets herein was achieved in 3-12 min. The HiTRACE method, therefore, resolves a critical barrier to the efficient and accurate analysis of nucleic acid structure in experiments involving tens of thousands of electrophoretic bands.
Original language | English |
---|---|
Article number | btr277 |
Pages (from-to) | 1798-1805 |
Number of pages | 8 |
Journal | Bioinformatics |
Volume | 27 |
Issue number | 13 |
DOIs | |
Publication status | Published - 2011 Jul |
Bibliographical note
Funding Information:Funding: National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (Grant No. 2011-0009963 and No. 2011-0000158 to S.Y. in part); Burroughs-Wellcome Foundation Career Award at the Scientific Interface (to R.D. for computational work in part).
ASJC Scopus subject areas
- Statistics and Probability
- Biochemistry
- Molecular Biology
- Computer Science Applications
- Computational Theory and Mathematics
- Computational Mathematics