TY - JOUR
T1 - Hopping Electrochemical Supercapacitor Performance of Ultrathin BiOCl Petals Grown by a Room-Temperature Soft-Chemical Process
AU - Shinde, Nanasaheb M.
AU - Ghule, Balaji G.
AU - Raut, Siddheshwar D.
AU - Narwade, Sandesh H.
AU - Pak, James J.
AU - Mane, Rajaram S.
N1 - Publisher Copyright:
© 2021 American Chemical Society.
PY - 2021/4/15
Y1 - 2021/4/15
N2 - The use of easy synthesis methodology, high performance, and stable electrode materials is mandatory while developing potential energy storage devices on a mass scale. In the present work, room-temperature operating, a simple solution method is employed for obtaining ultrathin bismuth oxide chloride (BiOCl) supercapacitor electrode material over 3D nickel-foam. This free-standing BiOCl ultrathin petal-type electrode material was characterized for confiming the crystal strcture, surface morphology, and surface area by various characterization tools and then is envisaged in electrochemical supercapacitor application. Electrochemical analysis performed by several means has revealed an optimum specific capacitance of 379 F·g-1 (at current density of 1.25 A g-1). The symmetric electrochemical supercapacitor device assembled using two identical BiOCl electrodes in the presence of 6 M KOH electrolyte has demonstrated an excellent energy density of 12 Wh kg-1 and 1125 W kg-1 power density, and about 80% retention over 5000 cycles. Red, yellow, and green LEDs were ignited for ∼10 min glowing time using three BiOCl//BiOCl symmetric devices connecting in series, and it thus has a potential for accelerating energy storage devices like electrical vehicles and mobile phones.
AB - The use of easy synthesis methodology, high performance, and stable electrode materials is mandatory while developing potential energy storage devices on a mass scale. In the present work, room-temperature operating, a simple solution method is employed for obtaining ultrathin bismuth oxide chloride (BiOCl) supercapacitor electrode material over 3D nickel-foam. This free-standing BiOCl ultrathin petal-type electrode material was characterized for confiming the crystal strcture, surface morphology, and surface area by various characterization tools and then is envisaged in electrochemical supercapacitor application. Electrochemical analysis performed by several means has revealed an optimum specific capacitance of 379 F·g-1 (at current density of 1.25 A g-1). The symmetric electrochemical supercapacitor device assembled using two identical BiOCl electrodes in the presence of 6 M KOH electrolyte has demonstrated an excellent energy density of 12 Wh kg-1 and 1125 W kg-1 power density, and about 80% retention over 5000 cycles. Red, yellow, and green LEDs were ignited for ∼10 min glowing time using three BiOCl//BiOCl symmetric devices connecting in series, and it thus has a potential for accelerating energy storage devices like electrical vehicles and mobile phones.
UR - http://www.scopus.com/inward/record.url?scp=85105033303&partnerID=8YFLogxK
U2 - 10.1021/acs.energyfuels.1c00308
DO - 10.1021/acs.energyfuels.1c00308
M3 - Article
AN - SCOPUS:85105033303
SN - 0887-0624
VL - 35
SP - 6892
EP - 6897
JO - Energy and Fuels
JF - Energy and Fuels
IS - 8
ER -