Hot embossing for fabrication of a microfluidic 3D cell culture platform

Jessie S. Jeon, Seok Chung, Roger D. Kamm, Joseph L. Charest

Research output: Contribution to journalArticlepeer-review

81 Citations (Scopus)


Clinically relevant studies of cell function in vitro require a physiologically-representative microenvironment possessing aspects such as a 3D extracellular matrix (ECM) and controlled biochemical and biophysical parameters. A polydimethylsiloxane (PDMS) microfluidic system with a 3D collagen gel has previously served for analysis of factors inducing different responses of cells in a 3D microenvironment under controlled biochemical and biophysical parameters. In the present study, applying the known commercially-viable manufacturing methods to a cyclic olefin copolymer (COC) material resulted in a microfluidic device with enhanced 3D gel capabilities, controlled surface properties, and improved potential to serve high-volume applications. Hot embossing and roller lamination molded and sealed the microfluidic device. A combination of oxygen plasma and thermal treatments enhanced the sealing, ensured proper placement of the 3D gel, and created controlled and stable surface properties within the device. Culture of cells in the new device indicated no adverse effects of the COC material or processing as compared to previous PDMS devices. The results demonstrate a methodology to transition microfludic devices for 3D cell culture from scientific research to high-volume applications with broad clinical impact.

Original languageEnglish
Pages (from-to)325-333
Number of pages9
JournalBiomedical Microdevices
Issue number2
Publication statusPublished - 2011 Apr

Bibliographical note

Funding Information:
Acknowledgement The research is supported by Award Number R21CA140096 from the National Cancer Institute and Draper Laboratories Inc. (IR&D Grant). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institue of Health. Seok Chung was supported by the International Research & Development Program (Grant number: 2009-00631).


  • 3D cell culture
  • COC
  • Hot embossing
  • Microfluidics
  • Surface treatment
  • Thermal bonding

ASJC Scopus subject areas

  • Biomedical Engineering
  • Molecular Biology


Dive into the research topics of 'Hot embossing for fabrication of a microfluidic 3D cell culture platform'. Together they form a unique fingerprint.

Cite this