TY - JOUR
T1 - Hydrochemical and Isotopic Difference of Spring Water Depending on Flow Type in a Stratigraphically Complex Karst Area of South Korea
AU - Yu, Soonyoung
AU - Chae, Gitak
AU - Oh, Junseop
AU - Kim, Se Hoon
AU - Kim, Dong Il
AU - Yun, Seong Taek
N1 - Funding Information:
The initiation of this work was funded by the Hyundai Engineering Co. as a part of a site investigation for a dam in 1999–2000. The completion of this work was supported by the Korea Ministry of Environment (MOE) as the “Korea-CO2 Storage Environmental Management (K-COSEM) Research Program.” The first author was also supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2019R1A2C1084297).
Publisher Copyright:
© Copyright © 2021 Yu, Chae, Oh, Kim, Kim and Yun.
PY - 2021/8/24
Y1 - 2021/8/24
N2 - Characterizing the subsurface flow in karstic areas is challenging due to distinct flow paths coexisting, and lithologic heterogeneity makes it more difficult. A combined use of hydrochemical, environmental isotopic, and hydrograph separation study was performed to understand the subsurface flow in a karst terrain where Ordovician carbonate rocks overlie Jurassic sandstone and shale along thrusts. Spring water collected was divided into Type Ⅰ (n = 11) and Ⅱ (n = 30) based on flow patterns (i.e., low and high discharge, respectively). In addition, groundwater (n = 20) was examined for comparison. Three Type Ⅱ springs were additionally collected during a storm event to construct hydrographs using δ18O and δD. As a result, Type Ⅱ had higher electrical conductivity, Mg2+, HCO3−, and Ca2+/(Na+ + K+) than Type Ⅰ and was mostly saturated with calcite, similar to deep groundwater. The hydrochemical difference between Types Ⅰ and Ⅱ was opposite to the expectation that Type Ⅱ would be undersaturated given fast flow and small storage, which could be explained by the distinct geology and water sources. Most Type Ⅱ springs and deep groundwater occurred in carbonate rocks, whereas Type Ⅰ and shallow groundwater occurred in various geological settings. The carbonate rocks seemed to provide conduit flow paths for Type Ⅱ given high solubility and faults, resulting in 1) relatively high tritium and NO3− and Cl− via short-circuiting flow paths and 2) the similar hydrochemistry and δ18O and δD to deep groundwater via upwelling from deep flow paths. The deep groundwater contributed to 83–87% of the discharge at three Type Ⅱ springs in the dry season. In contrast, Type Ⅰ showed low Ca2+ + Mg2+ and Ca2+/(Na+ + K+) discharging diffuse sources passing through shallow depths in a matrix in mountain areas. Delayed responses to rainfall and the increased concentrations of contaminants (e.g., NO3−) during a typhoon at Type Ⅱ implied storage in the vadose zone. This study shows that hydrochemical and isotopic investigations are effective to characterize flow paths, when combined with hydrograph separation because the heterogenous geology affects both flow paths and the hydrochemistry of spring water passing through each pathway.
AB - Characterizing the subsurface flow in karstic areas is challenging due to distinct flow paths coexisting, and lithologic heterogeneity makes it more difficult. A combined use of hydrochemical, environmental isotopic, and hydrograph separation study was performed to understand the subsurface flow in a karst terrain where Ordovician carbonate rocks overlie Jurassic sandstone and shale along thrusts. Spring water collected was divided into Type Ⅰ (n = 11) and Ⅱ (n = 30) based on flow patterns (i.e., low and high discharge, respectively). In addition, groundwater (n = 20) was examined for comparison. Three Type Ⅱ springs were additionally collected during a storm event to construct hydrographs using δ18O and δD. As a result, Type Ⅱ had higher electrical conductivity, Mg2+, HCO3−, and Ca2+/(Na+ + K+) than Type Ⅰ and was mostly saturated with calcite, similar to deep groundwater. The hydrochemical difference between Types Ⅰ and Ⅱ was opposite to the expectation that Type Ⅱ would be undersaturated given fast flow and small storage, which could be explained by the distinct geology and water sources. Most Type Ⅱ springs and deep groundwater occurred in carbonate rocks, whereas Type Ⅰ and shallow groundwater occurred in various geological settings. The carbonate rocks seemed to provide conduit flow paths for Type Ⅱ given high solubility and faults, resulting in 1) relatively high tritium and NO3− and Cl− via short-circuiting flow paths and 2) the similar hydrochemistry and δ18O and δD to deep groundwater via upwelling from deep flow paths. The deep groundwater contributed to 83–87% of the discharge at three Type Ⅱ springs in the dry season. In contrast, Type Ⅰ showed low Ca2+ + Mg2+ and Ca2+/(Na+ + K+) discharging diffuse sources passing through shallow depths in a matrix in mountain areas. Delayed responses to rainfall and the increased concentrations of contaminants (e.g., NO3−) during a typhoon at Type Ⅱ implied storage in the vadose zone. This study shows that hydrochemical and isotopic investigations are effective to characterize flow paths, when combined with hydrograph separation because the heterogenous geology affects both flow paths and the hydrochemistry of spring water passing through each pathway.
KW - flow type
KW - geological heterogeneity
KW - hydrochemistry
KW - hydrograph separation
KW - karstic spring
UR - http://www.scopus.com/inward/record.url?scp=85114444256&partnerID=8YFLogxK
U2 - 10.3389/feart.2021.712865
DO - 10.3389/feart.2021.712865
M3 - Article
AN - SCOPUS:85114444256
SN - 2296-6463
VL - 9
JO - Frontiers in Earth Science
JF - Frontiers in Earth Science
M1 - 712865
ER -