TY - JOUR
T1 - Hydrogenated amorphous carbon nano-coated lithium metal electrode for the anode of lithium secondary batteries
AU - Shim, Heung Taek
AU - Byun, Dongjin
AU - Lee, Joong Kee
PY - 2006
Y1 - 2006
N2 - Lithium metal is one of the most promising materials as an anode for the high energy density secondary battery because lithium metal has highly negative potential and extremely high theoretical specific capacity. However, lithium metal has several disadvantages for use in secondary battery systems including high reactivity, particularly with moisture and dendrite formation. To solve the dendritic formation of lithium metal, a study on the interface reaction that would affect the cyclability and lifetime of the for the lithium secondary battery was conducted. A hydrogenated amorphous carbon (a-C:H), called a diamond-like carbon (DLC) films, was introduced. Radio-frequency Plasma Enhanced Chemical Vapor Deposition was employed to coat DLC film on the lithium foil. DLC film was coated on the lithium foil of 75 μ thickness and then used as an anode of lithium secondary batteries without further treatment. DLC coated lithium metal electrode had a better cycle performance than pure lithium metal electrode without any treatment. DLC film on the lithium electrode prevented capacity fading from dendrite formation. This is an abstract of a paper presented at the 231th ACS National Meeting (Atlanta, GA 3/26-30/2006).
AB - Lithium metal is one of the most promising materials as an anode for the high energy density secondary battery because lithium metal has highly negative potential and extremely high theoretical specific capacity. However, lithium metal has several disadvantages for use in secondary battery systems including high reactivity, particularly with moisture and dendrite formation. To solve the dendritic formation of lithium metal, a study on the interface reaction that would affect the cyclability and lifetime of the for the lithium secondary battery was conducted. A hydrogenated amorphous carbon (a-C:H), called a diamond-like carbon (DLC) films, was introduced. Radio-frequency Plasma Enhanced Chemical Vapor Deposition was employed to coat DLC film on the lithium foil. DLC film was coated on the lithium foil of 75 μ thickness and then used as an anode of lithium secondary batteries without further treatment. DLC coated lithium metal electrode had a better cycle performance than pure lithium metal electrode without any treatment. DLC film on the lithium electrode prevented capacity fading from dendrite formation. This is an abstract of a paper presented at the 231th ACS National Meeting (Atlanta, GA 3/26-30/2006).
UR - http://www.scopus.com/inward/record.url?scp=33745266151&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33745266151&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:33745266151
SN - 0065-7727
VL - 231
JO - ACS National Meeting Book of Abstracts
JF - ACS National Meeting Book of Abstracts
T2 - 231th ACS National Meeting
Y2 - 26 March 2006 through 30 March 2006
ER -