Hydrophilic astragalin galactoside induces T helper type 1-mediated immune responses via dendritic cells

Jae Hyoung Jeon, Byung Cheol Lee, Doman Kim, Daeho Cho, Tae Sung Kim

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

A flavonoid Astragalin (kaempferol-3-O-β-D-glucopyranoside, Ast) has several biological activities including anti-oxidant, anti-HIV, and anti-allergic effects. Nonetheless, its insolubility in hydrophilic solvents imposes restrictions on its therapeutic applications. In this study, we investigated the effects of water-soluble astragalin-galactoside (kaempferol-3-O-β-D-isomaltotrioside, Ast-Gal) on murine bone marrow-derived dendritic cell (DC) maturation and T helper (Th) cell-mediated immune responses. Ast-Gal significantly increased maturation and activation of DCs through the upregulation of surface markers, such as cluster of differentiation (CD)80, CD86, and Major histocompatibility complex (MHC) II in a dose-dependent manner, while Ast had little effects. Additionally, Ast-Gal-treated DCs markedly secreted immune-stimulating cytokines such as interleukin (IL)-1β, IL-6, and IL-12. Importantly, Ast-Gal strongly increased expression of IL-12, a polarizing cytokine of Th1 cells. In a co-culture system of DCs and CD4+ T cells, Ast-Gal-treated DCs preferentially differentiates naïve CD4+ T cells into Th1 cells. The addition of neutralizing IL-12 monoclonal antibody (mAb) to cultures of Ast-Gal-treated DCs and CD4+ T cells significantly decreased interferon (IFN)-γ production, thereby indicating that Ast-Gal-stimulated DCs enhance the Th1 response through IL-12 production by DCs. Injection with Ast-Gal-treated DCs in mice increased IFN-γ-secreting Th1 cell population. Collectively, these findings indicate that hydrophilically modified astragalin can enhance Th1-mediated immune responses via DCs and point to a possible application of water-soluble astragalin-galactoside as an immune adjuvant.

Original languageEnglish
Article number3120
JournalInternational journal of molecular sciences
Volume19
Issue number10
DOIs
Publication statusPublished - 2018 Oct 11

Keywords

  • Adjuvant
  • Astragalin galactoside
  • Dendritic cell
  • Hydrophilic modification
  • Th1 cell

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Hydrophilic astragalin galactoside induces T helper type 1-mediated immune responses via dendritic cells'. Together they form a unique fingerprint.

Cite this