Hydroxyapatite-zirconia composite thin films showing improved mechanical properties and bioactivity

Min Seok Kim, Jae Jun Ryu, Yun Mo Sung

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


Nano-crystalline hydroxyapatite (HAp) films were formed at the Ti surface by a single-step microarc oxidation (MAO), and HAp-zirconia composite (HZC) films were obtained by subsequent chemical vapor deposition (CVD) of zirconia onto the HAp. Through the CVD process, zero- and one-dimensional zirconia nanostructures having tetragonal crystallinity (t-ZrO2) were uniformly distributed and well incorporated into the HAp crystal matrix to form nanoscale composites. In particular, (t-ZrO2) was synthesized at a very low temperature. The HZC films did not show secondary phases such as tricalcium phosphate (TCP) and tetracalcium phosphate (TTCP) at relatively high temperatures. The most likely mechanism for the formation of the t-ZrO2 and the pure HAp at the low processing temperature was proposed to be the diffusion of Ca2+ ions. The HZC films showed increasing micro-Vickers hardness values with increases in the t-ZrO2 content. The morphological features and phase compositions of the HZC films showed strong dependence on the time and temperature of the CVD process. Furthermore, they showed enhanced cell proliferation compared to the TiO2 and HAp films most likely due to the surface structure change.

Original languageEnglish
Pages (from-to)85-89
Number of pages5
JournalKorean Journal of Materials Research
Issue number2
Publication statusPublished - 2009


  • Biomaterials
  • Hydroxyapatite
  • MTT assay
  • Zirconium dioxide

ASJC Scopus subject areas

  • Materials Science(all)


Dive into the research topics of 'Hydroxyapatite-zirconia composite thin films showing improved mechanical properties and bioactivity'. Together they form a unique fingerprint.

Cite this