Identification of Hit Compounds Using Artificial Intelligence for the Management of Allergic Diseases

Junhyoung Byun, Junhu Tai, Byoungjae Kim, Jaehyeong Kim, Semyung Jung, Juhyun Lee, Youn woo Song, Jaemin Shin, Tae Hoon Kim

Research output: Contribution to journalArticlepeer-review

Abstract

This study aimed to identify and evaluate drug candidates targeting the kinase inhibitory region of suppressor of cytokine signaling (SOCS) 3 for the treatment of allergic rhinitis (AR). Utilizing an artificial intelligence (AI)-based new drug development platform, virtual screening was conducted to identify compounds inhibiting the SH2 domain binding of SOCS3. Luminescence assays assessed the ability of these compounds to restore JAK-2 activity diminished by SOCS3. Jurkat T and BEAS-2B cells were utilized to investigate changes in SOCS3 and STAT3 expression, along with STAT3 phosphorylation in response to the identified compounds. In an OVA-induced allergic rhinitis mouse model, we measured serum levels of total IgE and OVA-specific IgE, performed real-time PCR on nasal mucosa samples to quantify Th2 cytokines and IFN-γ expression, and conducted immunohistochemistry to analyze eosinophil levels. Screening identified 20 hit compounds with robust binding affinities. As the concentration of SOCS3 increased, a corresponding decrease in JAK2 activity was observed. Compounds 5 and 8 exhibited significant efficacy in restoring JAK2 activity without toxicity. Treatment with these compounds resulted in reduced SOCS3 expression and the reinstatement of STAT3 phosphorylation in Jurkat T and BEAS-2B cells. In the OVA-induced allergic rhinitis mouse model, compounds 5 and 8 effectively alleviated nasal symptoms and demonstrated lower levels of immune markers compared to the allergy group. This study underscores the promising nonclinical efficacy of compounds identified through the AI-based drug development platform. These findings introduce innovative strategies for the treatment of AR and highlight the potential therapeutic value of targeting SOCS3 in managing AR.

Original languageEnglish
Article number2280
JournalInternational journal of molecular sciences
Volume25
Issue number4
DOIs
Publication statusPublished - 2024 Feb

Bibliographical note

Publisher Copyright:
© 2024 by the authors.

Keywords

  • allergic rhinitis
  • artificial intelligence
  • new drug development platform
  • SOCS3

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Identification of Hit Compounds Using Artificial Intelligence for the Management of Allergic Diseases'. Together they form a unique fingerprint.

Cite this