Image-guided navigation of single-element focused ultrasound transducer

Hyungmin Kim, Alan Chiu, Shinsuk Park, Seung Schik Yoo

Research output: Contribution to journalArticlepeer-review

37 Citations (Scopus)

Abstract

The spatial specificity and controllability of focused ultrasound (FUS), in addition to its ability to modify the excitability of neural tissue, allows for the selective and reversible neuromodulation of the brain function, with great potential in neurotherapeutics. Intraoperative magnetic resonance imaging (MRI) guidance has limitations due to its complicated examination logistics, such as fixation through skull screws to mount the stereotactic frame, simultaneous sonication in the MRI environment, and restrictions in choosing MR-compatible materials. To overcome these limitations, an image-guidance system based on optical tracking and preoperative imaging data is developed, separating the imaging acquisition for guidance and sonication procedure for treatment. Techniques to define the local coordinates of the focal point of sonication are presented. First, mechanical calibration detects the concentric rotational motion of a rigid-body optical tracker, attached to a straight rod mimicking the sonication path, pivoted at the virtual FUS focus. The spatial error presented in the mechanical calibration was compensated further by MRI-based calibration, which estimates the spatial offset between the navigated focal point and the ground-truth location of the sonication focus obtained from a temperature-sensitive MR sequence. MRI-based calibration offered a significant decrease in spatial errors (1.9 ± 0.8 mm; 57% reduction) compared to the mechanical calibration method alone (4.4 ± 0.9 mm). Using the presented method, pulse-mode FUS was applied to the motor area of the rat brain, and successfully stimulated the motor cortex. The presented techniques can be readily adapted for the transcranial application of FUS to intact human brain. © 2012 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 22, 177-184, 2012

Original languageEnglish
Pages (from-to)177-184
Number of pages8
JournalInternational Journal of Imaging Systems and Technology
Volume22
Issue number3
DOIs
Publication statusPublished - 2012 Sept

Keywords

  • brain
  • calibration
  • focused ultrasound
  • image-guidance
  • neuromodulation
  • optical tracking
  • single-element transducer

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Software
  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Image-guided navigation of single-element focused ultrasound transducer'. Together they form a unique fingerprint.

Cite this