Immunosensor based on the ZnO nanorod networks for the detection of H1N1 swine in?uenza virus

Yunseok Jang, Jungil Park, Youngmi Kim Pak, James Jungho Pak

    Research output: Contribution to journalArticlepeer-review

    24 Citations (Scopus)

    Abstract

    This paper presents an immunosensor fabricated on patterned zinc oxide nanorod networks (ZNNs) for detecting the H1N1 swine in?uenza virus (H1N1 SIV). Nanostructured ZnO with a high isoelectric point (IEP, ∼9.5) possesses good absorbability for proteins with low IEPs. Hydrothermally grown ZNNs were fabricated on a patterned Au electrode (0.02 cm 2) through a lift-off process. To detect the H1N1 SIV, the sandwich enzyme-linked immunosorbent assay (ELISA) method was employed in the immunosensor. The immunosensor was evaluated in an acetate buffer solution containing 3,3′,5,5′- tetramethylbenzidine (TMB) via cyclic voltammetry at various H1N1 SIV concentrations (1 pg/mL-5 ng/mL). The measurement results of the fabricated immunosensor showed that the reduction currents of TMB at 0.25 V logarithmically increased from 259.37 to 577.98 nA as the H1N1 SIV concentration changed from 1 pg/mL to 5 ng/mL. An H1N1 SIV immunosensor, based on the patterned ZNNs, was successfully realized for detecting 1 pg/mL-5 ng/mL H1N1 SIV concentrations, with a detection limit of 1 pg/mL for H1N1 SIV.

    Original languageEnglish
    Pages (from-to)5173-5177
    Number of pages5
    JournalJournal of Nanoscience and Nanotechnology
    Volume12
    Issue number7
    DOIs
    Publication statusPublished - 2012 Jul

    Keywords

    • H1N1 Swine In?uenza Virus
    • Immunosensor
    • ZnO Nanorod Networks

    ASJC Scopus subject areas

    • Bioengineering
    • General Chemistry
    • Biomedical Engineering
    • General Materials Science
    • Condensed Matter Physics

    Fingerprint

    Dive into the research topics of 'Immunosensor based on the ZnO nanorod networks for the detection of H1N1 swine in?uenza virus'. Together they form a unique fingerprint.

    Cite this