Abstract
We have investigated the effects of a NiCo interlayer on the electrical and thermal properties of nickel silicide as a function of the annealing temperature. For the interlayered samples, 3 nm-thick NiCo(10 at.% Co) films are electron-beam evaporated on Si substrates, on which 27 nm-thick Ni films are deposited without breaking the vacuum. It is shown that all the samples exhibit a distinctive increase in the sheet resistance at temperatures above 900 {ring operator}C. However, the NiCo interlayer sample produces the lowest sheet resistance at 900 \circC. X-ray diffraction results show that the Ni only and NiCo interlayer samples produce NiSi and NiSi2 phases, while NiCo full samples give NiSi and Ni1-xCoxSi2 phases. Scanning electron microscopy results exhibit that for all the samples, the surfaces become degraded with numerous arbitrarily-shaped spots, corresponding to areas uncovered by the silicides. The areal fractions of the silicides for the Ni only, NiCo full, and NiCo interlayer samples are about 57%, 72%, and 81%, respectively. The temperature dependence of the electrical properties of the silicide samples is explained in terms of the formation of resistive phases and the agglomeration of the silicide.
Original language | English |
---|---|
Pages (from-to) | 259-265 |
Number of pages | 7 |
Journal | Superlattices and Microstructures |
Volume | 47 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2010 Feb |
Bibliographical note
Funding Information:This work was supported by Hynix semiconductor Inc. through Nanosemiconductor Engineering Program and WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R33-2008-000-10025-0). One (CJC) of the authors was supported by the “Industrial Source Technology Development Programs (2009-F014-01)” of the Ministry of Knowledge Economy (MKE) of Korea.
Keywords
- NiCo interlayer
- Nickel silicide
- Thermal stability
ASJC Scopus subject areas
- General Materials Science
- Condensed Matter Physics
- Electrical and Electronic Engineering